13 research outputs found

    Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen

    No full text
    Large-scale data from digital infrastructure, like mobile phone networks, provides rich information on the behavior of millions of people in areas affected by climate stress. Using anonymized data on mobility and calling behavior from 5.1 million Grameenphone users in Barisal Division and Chittagong District, Bangladesh, we investigate the effect of Cyclone Mahasen, which struck Barisal and Chittagong in May 2013. We characterize spatiotemporal patterns and anomalies in calling frequency, mobile recharges, and population movements before, during and after the cyclone. While it was originally anticipated that the analysis might detect mass evacuations and displacement from coastal areas in the weeks following the storm, no evidence was found to suggest any permanent changes in population distributions. We detect anomalous patterns of mobility both around the time of early warning messages and the storm’s landfall, showing where and when mobility occurred as well as its characteristics. We find that anomalous patterns of mobility and calling frequency correlate with rainfall intensity (r = .75, p < 0.05) and use calling frequency to construct a spatiotemporal distribution of cyclone impact as the storm moves across the affected region. Likewise, from mobile recharge purchases we show the spatiotemporal patterns in people’s preparation for the storm in vulnerable areas. In addition to demonstrating how anomaly detection can be useful for modeling human adaptation to climate extremes, we also identify several promising avenues for future improvement of disaster planning and response activities

    The iPhone and mobile access to the internet

    No full text

    Unveiling hidden migration and mobility patterns in climate stressed regions: A longitudinal study of six million anonymous mobile phone users in Bangladesh

    Get PDF
    Climate change is likely to drive migration from environmentally stressed areas. However quantifying short and long-term movements across large areas is challenging due to difficulties in the collection of highly spatially and temporally resolved human mobility data. In this study we use two datasets of individual mobility trajectories from six million de-identified mobile phone users in Bangladesh over three months and two years respectively. Using data collected during Cyclone Mahasen, which struck Bangladesh in May 2013, we show first how analyses based on mobile network data can describe important short-term features (hours–weeks) of human mobility during and after extreme weather events, which are extremely hard to quantify using standard survey based research. We then demonstrate how mobile data for the first time allow us to study the relationship between fundamental parameters of migration patterns on a national scale. We concurrently quantify incidence, direction, duration and seasonality of migration episodes in Bangladesh. While we show that changes in the incidence of migration episodes are highly correlated with changes in the duration of migration episodes, the correlation between in- and out-migration between areas is unexpectedly weak. The methodological framework described here provides an important addition to current methods in studies of human migration and climate change

    Mobility and phone call behavior explain patterns in poverty at high-resolution across multiple settings

    No full text
    Abstract Call detail records (CDRs) from mobile phone metadata are a promising data source for mapping poverty indicators in low- and middle-income countries. These data provide information on social networks, call behavior, and mobility patterns in a population, which are correlated with measures of socioeconomic status. CDRs are passively collected and provide information with high spatial and temporal resolution. Identifying features from these data that are generalizable and able to predict poverty and wealth beyond a single context could promote broader usage of mobile data, contribute to a reduction in the cost of socioeconomic data collection and processing, as well as complement existing census and survey-based methods of poverty estimation with improved temporal resolution. This is especially important within the context of the sustainable development goals (SDGs), where poverty and related health indicators are to be reduced significantly across subnational geographies by 2030. Here we utilize measures of cell phone user behavior derived from three CDR datasets within a Bayesian modeling framework to map poverty and wealth patterns across Namibia, Nepal, and Bangladesh. We demonstrate five metrics of user mobility and call behavior that are able to explain between 50% and 65% of the variance in socioeconomic status nationally for these three countries. These key metrics prove useful in very different contexts and can be readily provided as part of an existing CDR platform or software package. This paper provides a key contribution in this regard by identifying such metrics relevant to estimating poverty. We highlight the inclusion of ancillary data and local context as an important factor in understanding model outputs when targeting poverty alleviation strategies
    corecore