20 research outputs found

    A national survey on temporary and delayed abdominal closure in Norwegian hospitals

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Temporary abdominal closure (TAC) is included in most published damage control (DC) and abdominal compartment (ACS) protocols. TAC is associated with a range of complications and the optimal method remains to be defined. The aim of the present study was to describe the experience regarding TAC after trauma and ACS in all acute care hospitals in a sparsely populated country with long transportation distances.</p> <p>Material and methods</p> <p>A questionnaire was sent to all 50 Norwegian hospitals with acute care general surgical services.</p> <p>Results</p> <p>The response rate was 88%. A very limited number of hospitals had treated more than one trauma patient with TAC (5%) or one patient with ACS (14%) on average per year. Most hospitals preferred vacuum assisted techniques, but few reported having formal protocols for TAC or ACS. Although most hospitals would refer patients with TAC to a trauma centre, more than 50% reported that they would perform a secondary reconstruction procedure themselves.</p> <p>Conclusion</p> <p>This study shows that most Norwegian hospitals have limited experience with TAC and ACS. However, the long distances between hospitals mandate all acute care hospitals to implement formal treatment protocols including monitoring of IAP, diagnosing and decompression of ACS, and the use of TAC. Assuming experience leads to better care, the subsequent treatment of these patients might benefit from centralization to one or a few regional centers.</p

    Implementation of recommended trauma system criteria in south-eastern Norway: a cross-sectional hospital survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Formalized trauma systems have shown beneficial effects on patient survival and have harvested great recognition among health care professionals. In spite of this, the implementation of trauma systems is challenging and often met with resistance.</p> <p>Recommendations for a national trauma system in Norway were published in 2007. We wanted to assess the level of implementation of these recommendations.</p> <p>Methods</p> <p>A survey of all acute care hospitals that receive severely injured patients in the south-eastern health region of Norway was conducted. A structured questionnaire based on the 2007 national recommendations was used in a telephone interview of hospital trauma personnel between January 17 and 21, 2011. Seventeen trauma system criteria were identified from the recommendations.</p> <p>Results</p> <p>Nineteen hospitals were included in the study and these received more than 2000 trauma patients annually via their trauma teams. Out of the 17 criteria that had been identified, the hospitals fulfilled a median of 12 criteria. Neither the size of the hospitals nor the distance between the hospitals and the regional trauma centre affected the level of trauma resources available. The hospitals scored lowest on the criteria for transfer of patients to higher level of care and on the training requirements for members of the trauma teams.</p> <p>Conclusion</p> <p>Our study identifies a major shortcoming in the efforts of regionalizing trauma in our region. The findings indicate that training of personnel and protocols for inter-hospital transfer are the major deficiencies from the national trauma system recommendations. Resources for training of personnel partaking in trauma teams and development of inter-hospital transfer agreements should receive immediate attention.</p

    Patients Referred to a Norwegian Trauma Centre: effect of transfer distance on injury patterns, use of resources and outcomes

    Get PDF
    Background Triage and interhospital transfer are central to trauma systems. Few studies have addressed transferred trauma patients. This study investigated transfers of variable distances to OUH (Oslo University Hospital, Ullevål), one of the largest trauma centres in Europe. Methods Patients included in the OUH trauma registry from 2001 to 2008 were included in the study. Demographic, injury, management and outcome data were abstracted. Patients were grouped according to transfer distance: ≤20 km, 21-100 km and > 100 km. Results Of the 7.353 included patients, 5.803 were admitted directly, and 1.550 were transferred. The number of transfers per year increased, and there was no reduction in injury severity during the study period. Seventy-six per cent of the transferred patients were severely injured. With greater transfer distances, injury severity increased, and there were larger proportions of traffic injuries, polytrauma and hypotensive patients. With shorter distances, patients were older, and head injuries and injuries after falls were more common. The shorter transfers less often activated the trauma team: ≤20 km -34%; 21-100 km -51%; > 100 km -61%, compared to 92% of all directly admitted patients. The mortality for all transferred patients was 11%, but was unequally distributed according to transfer distance. Conclusion This study shows heterogeneous characteristics and high injury severity among interhospital transfers. The rate of trauma team assessment was low and should be further examined. The mortality differences should be interpreted with caution as patients were in different phases of management. The descriptive characteristics outlined may be employed in the development of triage protocols and transfer guidelines

    Open Access Changes in fibrinogen availability and utilization in an animal model of traumatic coagulopathy

    Get PDF
    Background: Impaired haemostasis following shock and tissue trauma is frequently detected in the trauma setting. These changes occur early, and are associated with increased mortality. The mechanism behind trauma-induced coagulopathy (TIC) is not clear. Several studies highlight the crucial role of fibrinogen in posttraumatic haemorrhage. This study explores the coagulation changes in a swine model of early TIC, with emphasis on fibrinogen levels and utilization of fibrinogen. Methods: A total of 18 landrace pigs were anaesthetized and divided into four groups. The Trauma-Shock group (TS) were inflicted bilateral blast femoral fractures with concomitant soft tissue injury by a high-energy rifle shot to both hind legs, followed by controlled exsanguination. The Shock group (S) was exposed to shock by exsanguination, whereas a third group was exposed to trauma only (T). A fourth group (C) served as control. Physiological data, haematological measurements, blood gas analyses and conventional coagulation assays were recorded at baseline and repeatedly over 60 minutes. Thrombelastometry were performed by means of the tissue factor activated ExTEM assay and the platelet inhibiting FibTEM assay. Data were statistically analysed by repeated measurements analyses method. Results: A significant reduction of fibrinogen concentration was observed in both the TS and S groups. IN

    Data-driven Development of ROTEM and TEG Algorithms for the Management of Trauma Hemorrhage:A Prospective Observational Multicenter Study

    No full text
    OBJECTIVE: Developing pragmatic data-driven algorithms for management of trauma induced coagulopathy (TIC) during trauma hemorrhage for viscoelastic hemostatic assays (VHAs). BACKGROUND: Admission data from conventional coagulation tests (CCT), rotational thrombelastometry (ROTEM) and thrombelastography (TEG) were collected prospectively at 6 European trauma centers during 2008 to 2013. METHODS: To identify significant VHA parameters capable of detecting TIC (defined as INR > 1.2), hypofibrinogenemia (< 2.0 g/L), and thrombocytopenia (< 100 x10/L), univariate regression models were constructed. Area under the curve (AUC) was calculated, and threshold values for TEG and ROTEM parameters with 70% sensitivity were included in the algorithms. RESULTS: A total of, 2287 adult trauma patients (ROTEM: 2019 and TEG: 968) were enrolled. FIBTEM clot amplitude at 5 minutes (CA5) had the largest AUC and 10 mm detected hypofibrinogenemia with 70% sensitivity. The corresponding value for functional fibrinogen (FF) TEG maximum amplitude (MA) was 19 mm. Thrombocytopenia was similarly detected using the calculated threshold EXTEM-FIBTEM CA5 30 mm. The corresponding rTEG-FF TEG MA was 46 mm. TIC was identified by EXTEM CA5 41 mm, rTEG MA 64 mm (80% sensitivity). For hyperfibrinolysis, we examined the relationship between viscoelastic lysis parameters and clinical outcomes, with resulting threshold values of 85% for EXTEM Li30 and 10% for rTEG Ly30.Based on these analyses, we constructed algorithms for ROTEM, TEG, and CCTs to be used in addition to ratio driven transfusion and tranexamic acid. CONCLUSIONS: We describe a systematic approach to define threshold parameters for ROTEM and TEG. These parameters were incorporated into algorithms to support data-driven adjustments of resuscitation with therapeutics, to optimize damage control resuscitation practice in trauma

    Additional file 1 of Parental genetically predicted liability for coronary heart disease and risk of adverse pregnancy outcomes: a cohort study

    No full text
    Additional file 1: Table S1. Genetic variants used in the calculation of the genetic risk score for coronary heart disease. Table S2. Description of participants with and without genotype data in MoBa and HUNT. Table S3. Sample sizes. Figure S1. Associations between one SD higher maternal genetic risk score for coronary heart disease and adverse pregnancy outcomes (A) and between one SD higher paternal genetic risk score and adverse pregnancy outcomes in female partners (B), in MoBa and HUNT participants individually
    corecore