5 research outputs found

    Search for exoplanets around pulsating stars of A--F type in Kepler Short Cadence data and the case of KIC 8197761

    Full text link
    We searched for extrasolar planets around pulsating stars by examining Kepler\textit{Kepler} data for transit-like events hidden in the intrinsic variability. All Short Cadence observations for targets with 6000 K <Teff<< T_{\rm eff} < 8500 K were visually inspected for transit-like events following the removal of pulsational signals by sinusoidal fits. Clear transit-like events were detected in KIC 5613330 and KIC 8197761. KIC 5613330 is a confirmed exoplanet host (Kepler-635b), where the transit period determined here is consistent with the literature value. KIC 8197761 is a γ\gamma Doradus - δ\delta Scuti star exhibiting eclipses/transits occurring every 9.8686667(27) d, having durations of 8.37 h, and causing brightness drops ΔFF=0.00629(29)\frac{\Delta F}{F} = 0.00629(29). The star's pulsation spectrum contains several mode doublets and triplets, identified as l=1l = 1, with a mean spacing of 0.001659(15) c/d, implying an internal rotation period of 301±3301\pm3 d. Trials to calculate the size of the light travel time effect (LTTE) from the pulsations to constrain the companion's mass ended inconclusive. Finding planets around γ\gamma Doradus stars from the pulsational LTTE, therefore, is concluded to be unrealistic. Spectroscopic monitoring of KIC 8197761 revealed sinusoidal radial velocity variations with a semi-amplitude of 19.75±0.3219.75 \pm 0.32 km/s, while individual spectra present rotational broadening consistent with vsini=9±1v \sin i = 9\pm1 km/s. This suggests that the stellar surface rotation is synchronized with the orbit, whereas the stellar core rotates \sim30 times slower. Combining the observed radial velocity variability with the transit photometry, constrains the companion's mass to be 0.28\approx 0.28 M_{\odot}, ruling out an exoplanet hypothesis.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    Unresolved Rossby and gravity modes in 214 A and F stars showing rotational modulation

    Full text link
    Here we report an ensemble study of 214 A- and F-type stars observed by \textit{Kepler}, exhibiting the so-called \textit{hump and spike} periodic signal, explained by Rossby modes (r~modes) -- the \textit{hump} -- and magnetic stellar spots or overstable convective (OsC) modes -- the \textit{spike} -- respectively. We determine the power confined in the non-resolved hump features and find additional gravity~modes (g~modes) humps always occurring at higher frequencies than the spike. Furthermore, we derive projected rotational velocities from FIES, SONG and HERMES spectra for 28 stars and the stellar inclination angle for 89 stars. We find a strong correlation between the spike amplitude and the power in the r and g~modes, which suggests that both types of oscillations are mechanically excited by either stellar spots or OsC modes. Our analysis suggests that stars with a higher power in m=1m=1 r~modes humps are more likely to also exhibit humps at higher azimuthal orders (mm = 2, 3, or 4). Interestingly, all stars that show g~modes humps are hotter and more luminous than the observed red edge of the δ\delta Scuti instability strip, suggesting that either magnetic fields or convection in the outer layers could play an important role.Comment: 18 pages, 19 figure

    Applying social learning to climate communications- visualising 'people like me' in air pollution and climate change data

    Get PDF
    Technological approaches to carbon emission and air pollution data modelling consider where the issues are located and what is creating emissions. This paper argues that more focus should be paid to people-the drivers of vehicles or households burning fossil fuels (‘Who’) and the reasons for doing so at those times (‘Why’). We applied insights from social psychology (social identity theory and social cognitive theory) to better understand and communicate how people’s everyday activities are a cause of climate change and air pollution. A new method for citizen-focused source apportionment modelling and communication was developed in the ClairCity project and applied to travel data from Bristol, U.K. This approach enables understanding of the human dimension of vehicle use to improve policymaking, accounting for demographics (gender or age groups), socioeconomic factors (income/car ownership) and motives for specific behaviours (e.g., commuting to work, leisure, shopping, etc.). Tailored communications for segmented in-groups were trialled, aiming to connect with group lived experiences and day-to-day behaviours. This citizen-centred approach aims to make groups more aware that ‘people like me’ create emissions, and equally, ‘people like me’ can take action to reduce emissions

    Gravity-mode Period Spacings as a Seismic Diagnostic for a Sample of γ Doradus Stars from Kepler Space Photometry and High-resolution Ground-based Spectroscopy

    No full text
    Gamma Doradus stars (hereafter γ Dor stars) are gravity-mode pulsators of spectral type A or F. Such modes probe the deep stellar interior, offering a detailed fingerprint of their structure. Four-year high-precision space-based Kepler photometry of γ Dor stars has become available, allowing us to study these stars with unprecedented detail. We selected, analysed, and characterized a sample of 67 γ Dor stars for which we have Kepler observations available. For all the targets in the sample we assembled high-resolution spectroscopy to confirm their F-type nature. We found fourteen binaries, among which four single-lined binaries, five double-lined binaries, two triple systems and three binaries with no detected radial velocity variations. We estimated the orbital parameters whenever possible. For the single stars and the single-lined binaries, fundamental parameter values were determined from spectroscopy. We searched for period spacing patterns in the photometric data and identified this diagnostic for 50 of the stars in the sample, 46 of which are single stars or single-lined binaries. We found a strong correlation between the spectroscopic v sin i and the period spacing values, confirming the influence of rotation on γ Dor-type pulsations as predicted by theory. We also found relations between the dominant g-mode frequency, the longest pulsation period detected in series of prograde modes, v sin i, and log Teff

    Unresolved Rossby and gravity modes in 214 A and F stars showing rotational modulation

    No full text
    Here we report an ensemble study of 214 A- and F-type stars observed by Kepler, exhibiting the so-called hump and spike periodic signal, explained by Rossby modes (r modes) - the hump - and magnetic stellar spots or overstable convective (OsC) modes- the spike, respectively. We determine the power confined in the non-resolved hump features and find additional gravity modes (g modes) humps always occurring at higher frequencies than the spike. Furthermore, we derive projected rotational velocities from FIES, SONG and HERMES spectra for 28 stars and the stellar inclination angle for 89 stars. We find a strong correlation between the spike amplitude and the power in the r and g modes, which suggests that both types of oscillations are mechanically excited by either stellar spots or OsC modes. Our analysis suggests that stars with a higher power in m = 1 r modes humps are more likely to also exhibit humps at higher azimuthal orders (m = 2, 3, or 4). Interestingly, all stars that show g modes humps are hotter and more luminous than the observed red edge of the δ Scuti instability strip, suggesting that either magnetic fields or convection in the outer layers could play an important role
    corecore