644 research outputs found

    Flux Expulsion - Field Evolution in Neutron Stars

    Get PDF
    Models for the evolution of magnetic fields of neutron stars are constructed, assuming the field is embedded in the proton superconducting core of the star. The rate of expulsion of the magnetic flux out of the core, or equivalently the velocity of outward motion of flux-carrying proton-vortices is determined from a solution of the Magnus equation of motion for these vortices. A force due to the pinning interaction between the proton-vortices and the neutron-superfluid vortices is also taken into account in addition to the other more conventional forces acting on the proton-vortices. Alternative models for the field evolution are considered based on the different possibilities discussed for the effective values of the various forces. The coupled spin and magnetic evolution of single pulsars as well as those processed in low-mass binary systems are computed, for each of the models. The predicted lifetimes of active pulsars, field strengths of the very old neutron stars, and distribution of the magnetic fields versus orbital periods in low-mass binary pulsars are used to test the adopted field decay models. Contrary to the earlier claims, the buoyancy is argued to be the dominant driving cause of the flux expulsion, for the single as well as the binary neutron stars. However, the pinning is also found to play a crucial role which is necessary to account for the observed low field binary and millisecond pulsars.Comment: 23 pages, + 7 figures, accepted for publication in Ap

    Wieldy Finger and Hand Motion Detection for Human Computer Interaction

    Full text link
    We have developed a gesture based interface for human computer interaction under the research field of computer vision.Earlier system have used the costlier system devices to make an effective interaction with systems, instead we have worked on the web cam based gesture input system.Our goal was to propound lesser cost, wieldy, object detection technique using blobs for detection of fingers.And to give number of count of the same.In addition, we have also implemented the hand gesture recognition

    Spin-down Rate of Pinned Superfluid

    Get PDF
    The spinning down (up) of a superfluid is associated with a radial motion of its quantized vortices. In the presence of pinning barriers against the motion of the vortices, a spin-down may be still realized through ``random unpinning'' and ``vortex motion,'' as two physically separate processes, as suggested recently. The spin-down rate of a pinned superfluid is calculated, in this framework, by directly solving the equation of motion applicable to only the unpinned moving vortices, at any given time. The results indicate that the pinned superfluid in the crust of a neutron star may as well spin down at the same steady-state rate as the rest of the star, through random unpinning events, while pinning conditions prevail and the superfluid rotational lag is smaller than the critical lag value.Comment: to appear in ApJ (vol. 649 ?

    Non-contact rack and pinion powered by the lateral Casimir force

    Get PDF
    The lateral Casimir force is employed to propose a design for a potentially wear-proof rack and pinion with no contact, which can be miniaturized to nano-scale. The robustness of the design is studied by exploring the relation between the pinion velocity and the rack velocity in the different domains of the parameter space. The effects of friction and added external load are also examined. It is shown that the device can hold up extremely high velocities, unlike what the general perception of the Casimir force as a weak interaction might suggest.Comment: 4 pages, submitted for publication on 17 Jan 0

    Diffusive transport of light in three-dimensional disordered Voronoi structures

    Full text link
    The origin of diffusive transport of light in dry foams is still under debate. In this paper, we consider the random walks of photons as they are reflected or transmitted by liquid films according to the rules of ray optics. The foams are approximately modeled by three-dimensional Voronoi tessellations with varying degree of disorder. We study two cases: a constant intensity reflectance and the reflectance of thin films. Especially in the second case, we find that in the experimentally important regime for the film thicknesses, the transport-mean-free path does not significantly depend on the topological and geometrical disorder of the Voronoi foams including the periodic Kelvin foam. This may indicate that the detailed structure of foams is not crucial for understanding the diffusive transport of light. Furthermore, our theoretical values for transport-mean-free path fall in the same range as the experimental values observed in dry foams. One can therefore argue that liquid films contribute substantially to the diffusive transport of light in {dry} foams.Comment: 8 pages, 8 figure

    Bragg solitons in nonlinear PT-symmetric periodic potentials

    Get PDF
    It is shown that slow Bragg soliton solutions are possible in nonlinear complex parity-time (PT) symmetric periodic structures. Analysis indicates that the PT-symmetric component of the periodic optical refractive index can modify the grating band structure and hence the effective coupling between the forward and backward waves. Starting from a classical modified massive Thirring model, solitary wave solutions are obtained in closed form. The basic properties of these slow solitary waves and their dependence on their respective PT-symmetric gain/loss profile are then explored via numerical simulations.Comment: 6 pages, 4 figures, published in Physical Review

    Diffusive transport of light in two-dimensional granular materials

    Full text link
    We study photon diffusion in a two-dimensional random packing of monodisperse disks as a simple model of granular material. We apply ray optics approximation to set up a persistent random walk for the photons. We employ Fresnel's intensity reflectance with its rich dependence on the incidence angle and polarization state of the light. We present an analytic expression for the transport-mean-free path in terms of the refractive indices of grains and host medium, grain radius, and packing fraction. We perform numerical simulations to examine our analytical result.Comment: 9 pages, 3 figure

    A two-parameter random walk with approximate exponential probability distribution

    Full text link
    We study a non-Markovian random walk in dimension 1. It depends on two parameters eps_r and eps_l, the probabilities to go straight on when walking to the right, respectively to the left. The position x of the walk after n steps and the number of reversals of direction k are used to estimate eps_r and eps_l. We calculate the joint probability distribution p_n(x,k) in closed form and show that, approximately, it belongs to the exponential family.Comment: 12 pages, updated reference to companion paper cond-mat/060126

    Persistent random walk on a one-dimensional lattice with random asymmetric transmittances

    Full text link
    We study the persistent random walk of photons on a one-dimensional lattice of random asymmetric transmittances. Each site is characterized by its intensity transmittance t (t') for photons moving to the right (left) direction. Transmittances at different sites are assumed independent, distributed according to a given probability density Distribution. We use the effective medium approximation and identify two classes of probability density distribution of transmittances which lead to the normal diffusion of photons. Monte Carlo simulations confirm our predictions.Comment: 7 pages, submitted to Phys. Rev.
    • 

    corecore