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Bragg solitons in nonlinear PT -symmetric periodic potentials
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It is shown that slow Bragg soliton solutions are possible in nonlinear complex parity-time (PT ) symmetric
periodic structures. Analysis indicates that the PT -symmetric component of the periodic optical refractive index
can modify the grating band structure and hence the effective coupling between the forward and backward
waves. Starting from a classical modified massive Thirring model, solitary wave solutions are obtained in closed
form. The basic properties of these slow solitary waves and their dependence on their respective PT -symmetric
gain-loss profile are then explored via numerical simulations.

DOI: 10.1103/PhysRevA.86.033801 PACS number(s): 42.65.Tg, 03.65.Ge, 11.30.Er, 42.65.Sf

I. INTRODUCTION

Periodic structures play an important role in the general
area of optics. As in solid-state physics, the periodicity in their
refractive index can lead to a succession of photonic band gaps
and transmission bands. In many applications, these properties
are used to obtain high reflectivities, frequency filtering, and
high-dispersion characteristics [1]. Index gratings, whether in
the bulk [2] or embedded in optical fibers [3,4], are examples
of such structures. Even though in principle these periodic
configurations can always be rigorously analyzed using a
Floquet-Bloch approach, on many occasions a coupled-mode
formalism will suffice. As shown by Kogelnik, this latter
formalism is particularly successful when the periodic index
perturbation is weak, in which case the coupling between
the forward and backward waves occurs over a distance of
several wavelengths [5]. In this regime, the interaction can be
described through the so-called slowly varying approximation,
which in turn leads to a relatively simple system of coupled
equations.

The behavior of Kerr nonlinear optical periodic systems was
first addressed in 1979 under continuous-wave conditions in
conjunction with optical bistability [6]. A few years later, it was
realized that this same system can also support a special class of
soliton solutions—the so-called Bragg solitons [7–9]. Unlike
optical solitons propagating in nonlinear dispersive fibers, this
family of waves is made possible by nonlinearly interlocking
both the forward and backward propagating modes [10,11].
In doing so, these wave packets “open up” a defect band
within the forbidden band gap thus allowing energy transport.
Given that under Bragg conditions this propagation is linearly
forbidden (the grating acts like a distributed mirror), the
resulting propagation can be very slow as in the case of self-
induced transparency. In general, the velocity of Bragg solitons
can range from zero (fully immobile light) to c/n, depending
on excitation conditions. We would like to emphasize that
so far, this class of waves has been primarily investigated
in conservative systems. The question arises as to how they
will behave in nonconservative environments, especially in
the presence of linear gain or loss.

Parity-time (PT ) symmetry in optics has recently attracted
considerable attention [12–29]. While PT symmetry was first

explored within the quantum domain [30–33], it is in optics
that a straightforward realization has been found where its
implications can be directly observed and studied [14,15].
As shown in [12,13], an optical system obeys PT symmetry
provided that its complex refractive index distribution n(r) =
nR(r) + inI (r) satisfies the condition n∗(r) = n(−r). In other
words, the real index profile must be an even function of
position while the gain-loss must be odd. It can be shown that
for such structures, a real propagation constant (eigenenergies
in the Hamiltonian language) exists for some range (exact
PT -symmetric phase) of the gain-loss coefficient. For larger
values of this coefficient the system undergoes a spontaneous
symmetry breaking, corresponding to a transition from real
to complex spectra (broken PT -symmetric phase). The phase
transition point shows all the characteristics of an exceptional
point (EP) singularity. Abrupt PT -symmetry breaking has
been recently observed in both active and passive experimental
arrangements [14,15,28]. In addition nonreciprocity in prop-
agation as well as double refraction and energy oscillations
have been predicted in periodic lattices and coupled structures.
The possibility of unidirectional invisibility was put forward in
linear and nonlinearPT -symmetric gratings and the properties
of PT -symmetric scatterers and lasers were also discussed
[23,24]. Finally, along somewhat different lines, the prospect
for static optical solitons in PT -periodic arrays has been
considered in several studies [34–38].

In this work we demonstrate that a new family of optical
Bragg solitons is possible in Kerr nonlinear PT -symmetric
periodic structures. Starting from a classical modified massive
Thirring model [39], solitary wave solutions are obtained in
closed form. The basic properties of these slow solitary waves
and their dependence on their respective PT -symmetric gain-
loss profile are explored and pertinent numerical simulations
are carried out to elucidate their behavior. We also show that at
the exceptional point, the evolution equations decouple, thus
allowing a special class of solutions.

II. THEORETICAL ANALYSIS

We begin our work by considering a PT -symmetric optical
grating having a periodic complex refractive index distribution.
Let us consider a fiber with the following refractive index of
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the core:

n = n0 + n1Rcos

(
2π

�
z

)
+ in1I sin

(
2π

�
z

)
+ n2|E|2. (1)

In this profile the first term stands for the refractive index of
the background material involved while the three other terms
are considered to be small perturbations on n0; the second term
describes periodic Bragg grating, the third term represents the
superimposed complexPT potential (gain or loss), and the last
term accounts for the Kerr nonlinearity. We now express the
solution as a sum of forward and backward propagating waves:

E = Ef (z,t)exp[i(β0z − ω0t)]

+Eb(z,t)exp[−i(β0z + ω0t)], (2)

where ω0 = 2πc/λ0 is the carrier angular frequency, λ0 is the
free space wavelength, and β0 = n0ω0/c is the unperturbed
propagation constant. Finally Ef (z,t) and Eb(z,t) represent
slowly varying amplitudes for the forward and backward
waves, respectively. In this case, it can be directly shown
that the two slowly varying envelope functions satisfy the
following coupled wave equations:

+ i

(
∂Ef

∂z
+ 1

v

∂Ef

∂t

)
+ (κ + g)e−i2δzEb

+ γ (|Ef |2 + 2|Eb|2)Ef = 0, (3a)

−i

(
∂Eb

∂z
− 1

v

∂Eb

∂t

)
+ (κ − g)e+i2δzEf

+ γ (|Eb|2 + 2|Ef |2)Eb = 0. (3b)

In the above equations v = c/n0 is the wave velocity in the
background material, κ = πn1R/λ0 is the coupling coefficient
arising from the real Bragg grating itself, and g = πn1I /λ0

is the antisymmetric coupling coefficient arising from the
complex PT potential term. In addition, δ = (n0/c)(ω0 − ωB)
is a measure of detuning from the Bragg angular frequency
ωB = πc/(n0�) and γ = n2ω0/c is the self-phase modulation
constant.

In the linear regime, the properties of Eq. (3) can be readily
understood by using the following gauge transformation:
Ef = Fe−iδzeivδt , Eb = Beiδzeivδt , in which case one obtains

+i

(
∂F

∂z
+ 1

v

∂F

∂t

)
+ (κ + g) B = 0, (4a)

−i

(
∂B

∂z
− 1

v

∂B

∂t

)
+ (κ − g) F = 0. (4b)

By assuming time harmonic solutions of the form (F,B) =
(F0,B0)exp [i(Kz − �t)] we arrive at the dispersion relation:

K2 = �2

v2
− (κ2 − g2). (5)

The effect of the PT -symmetric term arising from g on the
overall dispersion characteristics of this Bragg grating is obvi-
ous. In essence, its presence can effectively shift the photonic
band gap as illustrated in Fig. 1, for different ratios of g/κ . In
Fig. 1, the dispersion properties of this periodic PT grating
are depicted for three different regimes, depending on the ratio
of g/κ: Fig. 1(b), for g < κ (below PT -symmetry breaking
threshold), the band structure has essentially the shape of an

FIG. 1. Band structure of a PT -symmetric periodic grating
(linear case) for different ratios of g/κ; (a) 0, (b) 0.8, (c) 1, (d) 1.2

ordinary Bragg grating—with the photonic band gap reduced;
Fig. 1(c), for g = κ (at the PT threshold or exceptional point),
the band gap is closed and the dispersion curve is identical to
that expected from the homogeneous background material; and
Fig. 1(d), for g > κ (above threshold), where no band gap ex-
ists and the dispersion relation is totally different in shape. As
Fig. 1(d) illustrates, above the PT -symmetry breaking thresh-
old, around the origin, there is always a range of wave vectors
associated with complex frequencies. As we will see, this latter
observation explains why in this case field configurations can
grow or decay exponentially with propagation distance. In
addition, in this same regime the group velocity is always larger
than the velocity of light within the background material. In
this work, we mainly restrict our attention in the first range,
i.e., we will assume that the PT grating will be operated
below thePT threshold where the entire frequency spectrum is
real.

III. NONLINEAR DYNAMICS AND SOLITARY WAVE
SOLUTIONS

In this section we investigate the existence of solitary
wave solutions for the coupled wave Eqs. (3). To do so, we
exploit the existing similarity between Eqs. (3) and of that
of the massive Thirring model [39]. By introducing the two
parameters ρ = √

(κ − g)/(κ + g) and κρ =
√

κ2 − g2 and
by employing the gauge transformations Ef = Fe−iδzeivδt ,
Eb = ρBeiδzeivδt , these coupled wave equations can be written
in the following form:

+i

(
∂F

∂z
+ 1

v

∂F

∂t

)
+ κρB + γ (|F |2 + 2ρ2|B|2)F = 0,

(6a)

−i

(
∂B

∂z
− 1

v

∂B

∂t

)
+ κρF + γ (ρ2|B|2 + 2|F |2)B = 0.

(6b)
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We note that the above-mentioned gauge transformation is
only valid when κ > g, e.g., below the PT threshold point.
As a next step we consider a solution of the form

(F,B) = α(ψf ,ψb)eiη(z,t), (7)

where the constant α and the function η(z,t) remain to be
determined. On the other hand, (ψf ,ψb) represent solutions to
the Thirring model [8–10]:

ψf = +
√

κρ

2γ

1

�
sin(σ )ei�sech

(
θ − i

σ

2

)
, (8a)

ψb = −
√

κρ

2γ
�sin(σ )ei�sech

(
θ + i

σ

2

)
, (8b)

where � and θ are functions of z and t defined as follows:

θ = κρsin(σ )
z − vmt√

1 − m2
, (9)

� = κρcos(σ )
mz − vt√

1 − m2
. (10)

In the above, the dimensionless quantity m is defined as m =
(1 − �4)/(1 + �4) and finally � and σ (0 < σ < π ) are free
parameters. After inserting these solutions into Eq. (6) we then
obtain

dη

dθ
= +

(
1

2

α2

�4
+ ρ2α2 − 1

)
sin(σ )

∣∣∣∣sech

(
θ − i

σ

2

)∣∣∣∣
2

,

(11a)

dη

dθ
= −

(
1

2
α2ρ2�4 + α2 − 1

)
sin(σ )

∣∣∣∣sech

(
θ − i

σ

2

)∣∣∣∣
2

.

(11b)

A valid solution of Eqs. (11)) requires that both sides
are equal. This condition in turn determines the unknown
coefficient α:

α =
(

1 + ρ2

2
+ 1 + ρ2�8

4�4

)−1/2

. (12)

Finally η can then be obtained by integrating either one of
Eqs. (11):

η(θ ) = 2

(
α2

2�4
+ ρ2α2 − 1

)
tan−1

[
tanh(θ )tan

(σ

2

)]
. (13)

Here it is worth discussing the velocity and instantaneous
frequency associated with this soliton solution. According to
Eqs. (8) and (9) the soliton velocity can be readily obtained
from

vs = 1 − �4

1 + �4
v. (14)

Hence the soliton velocity can reach any value between zero
(� = 1) and the group velocity in the background medium
(� = 0). Using an amplitude and phase representation of
Eqs. (7) and (8), the corresponding phase of this soliton
solutions could be written as

� = η + � ± tan−1
[
tanh(θ )tan

(σ

2

)]
, (15)

where the plus and minus signs correspond to the forward
F and backward component B, respectively. Note that these

phases are obtained after the aforementioned gauge transfor-
mation. Hence to obtain the actual phases for the forward
and backward waves (Ef ,Eb) the term vδt ∓ δz must be
added to these phases, respectively. The instantaneous angular
frequency can then be obtained from a first-order term Taylor
series expansion of the respective phase of Eq. (15):

�s = κρv√
1 − m2

cos(σ ) + κρv√
1 − m2

sin(σ )

×
(

α2

2�4
+ ρ2α2 − 1 ± 0.5

)

× 2mtan
(

σ
2

)
sech2 [θ (z,t = 0)]

1 + tan2
(

σ
2

)
tanh2 [θ (z,t = 0)]

. (16)

Given that a gauge transformation was used, the quantity
vδ must be subtracted from the result of Eq. (16), which
is measured with respect to the carrier frequency. Thus the
total instantaneous angular frequency of this soliton solution
is given by ωs = �s − vδ + ω0 = �s + ωB . According to
the linear dispersion analysis used in the previous section,
the frequency band gap for the PT -symmetric grating can
be obtained from −κρv < � < κρv. Therefore, based on
Eq. (16), the soliton frequency �s may or may not lie in the
band gap. Up to this point, the solutions were obtained for
κ > g, i.e., before the PT symmetry is broken. On the other
hand, at exactly the PT -symmetry breaking point (κ = g),
the effective coupling coefficient κρ goes to zero. In this case,
the evolution equations are not completely decoupled and can
be more effectively treated in the original set of variables.
By introducing the gauge transformations Ef = Fe−iδzeivδt ,
Eb = Beiδzeivδt , the coupled wave Eqs. (3) reduce to

+i

(
∂F

∂z
+ 1

v

∂F

∂t

)
+ 2κB + γ

(|F |2 + 2|B|2)F = 0,

(17a)

−i

(
∂B

∂z
− 1

v

∂B

∂t

)
+ γ

(|B|2 + 2|F |2)B = 0.

(17b)

The linear coupling term between the forward and backward
waves now breaks the symmetry in the evolution equations.
Note that there is no energy transfer from the forward wave to
the backward but the backward wave facilitates energy transfer
to the forward. This can be better understood by considering
the general solution of Eq. (17b), given by

B = b(y)exp

(
−iγ

[
b2(y)x + 2

∫ x

0
|F |2dξ

])
, (18)

where x = 1
2 (z − vt), y = 1

2 (z + vt) are forward and back-
ward propagation coordinates and b is an arbitrary function.
On the other hand, Eqs. (17) admit a trivial solution when
B = 0. In this latter case, Eq. (17a) reduces to that describing
a forward propagating wave in the presence of nonlinear
self-phase modulation, which admits the following solution:

F = f (x)exp[iγf 2(x)y], (19)

where f is an arbitrary function. In the other words, in
this regime the intensity profile of the forward propagating
wave remains invariant during propagation while no energy is
transferred to the backward mode.
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FIG. 2. (Color online) Propagation dynamics of a solitary wave
solution in a PT -symmetric Bragg structure; intensity evolution
for both the forward (left) and backward waves (right) during
propagation.

IV. NUMERICAL RESULTS

In this section we exemplify our results through numerical
simulations of Eqs. (6). The numerical methods used for
solving the coupled wave equations presented are based
on finite difference methods using different discretizing
approaches in order to account for numerical stability [9,10].
Here for discretization we use Euler’s method that is based
on a first-order approximation for both temporal and spatial
derivatives. In this case stability would not be an issue as
long as the temporal step size is way smaller than the spatial
step size. First we investigate the behavior of the solitary
wave solution given by Eqs. (7)–(13). Figure 2 depicts the
corresponding propagation dynamics of this solution for both
the forward and backward waves. According to this figure,
these two components propagate at a common velocity and
they have the same profile [except for a scaling factor that is
clear from Eqs. (8)]. In this numerical example g/κ = 0.8, and
the space-time coordinates are normalized as follows: Z = κz

and T = κvt . In addition the forward and backward electric
fields are also here normalized with respect to the quantity
E0 = √

κ/γ . The parameter σ that determines the beam width
of these solitons is taken to be π/2, and the parameter � that
determines the common velocity of the two constituent waves
is taken to be 0.8. Figures 3 and 4 on the other hand show
the evolution of a Gaussian pulse when it excites only the

FIG. 3. (Color online) Propagation dynamics of a Gaussian wave
packet when injected only in the forward direction when the PT
grating is operated below the PT -symmetry breaking threshold.
(a),(b) Forward and backward components, respectively, and (c) the
associated energy as a function of normalized time.

FIG. 4. (Color online) The same as Fig. 3 when the PT grating
is operated at the PT -symmetry breaking threshold. (a),(b) Forward
and backward components, respectively, and (c) the associated energy
as a function of normalized time.

forward wave within such a PT -symmetric Bragg grating,
for two different cases: below the PT -symmetry breaking
point and at threshold. In these simulations g/κ is set to be
0.8, 1, respectively. In these figures the total energy of each
component that is proportional to

∫ ∞
−∞ |H (z,t)|2dz (where

H is either a forward or a backward wave) is also plotted
as a function of time. In the case of PT -symmetric soliton
solutions this quantity is constant with propagation.

According to Fig. 3, below the PT threshold there is an
oscillatory power exchange between the forward and backward
waves. In this same regime, by increasing the amplitude of the
imaginary potential (amplitude of gain-loss), the rate of this
energy exchange decreases. Figure 4, on the other hand, shows
that the forward Gaussian wave remains unchanged during
propagation while the backward wave is not excited at all.
This is in agreement with our previous discussion, as expected
from Eq. (19). This is because there is no energy coupling
between the forward and backward wave.

V. CONCLUSIONS

In this work we have demonstrated that a new family
of optical Bragg solitons is possible in Kerr nonlinear PT -
symmetric periodic structures. By considering the connection
to the classical modified massive Thirring model, solitary wave
solutions were obtained in closed form. The basic properties
of these slow solitary waves and their dependence on their
respective PT -symmetric gain-loss profile were explored and
pertinent numerical simulations were carried out to elucidate
their behavior. Finally, of interest will be to examine if similar
concepts can be applied in other periodic structures as for
example in nonlinear optical mesh lattices [40,41].
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