7,387 research outputs found

    A novel KIF11 mutation in a Turkish patient with microcephaly, lymphedema, and chorioretinal dysplasia from a consanguineous family.

    Get PDF
    Microcephaly–lymphedema–chorioretinal dysplasia (MLCRD) syndrome is a rare syndrome that was first described in 1992. Characteristic craniofacial features include severe microcephaly, upslanting palpebral fissures, prominent ears, a broad nose, and a long philtrum with a pointed chin. Recently, mutations in KIF11 have been demonstrated to cause dominantly inherited MLCRD syndrome. Herein, we present a patient with MLCRD syndrome whose parents were first cousins. The parents are unaffected, and thus a recessive mode of inheritance for the disorder was considered likely. However, the propositus carries a novel, de novo nonsense mutationinexon2 of KIF11. The patient also had midline cleft tongue which has not previously been described in this syndrome

    Microwave-induced nonequilibrium temperature in a suspended carbon nanotube

    Full text link
    Antenna-coupled suspended single carbon nanotubes exposed to 108 GHz microwave radiation are shown to be selectively heated with respect to their metal contacts. This leads to an increase in the conductance as well as to the development of a power-dependent DC voltage. The increased conductance stems from the temperature dependence of tunneling into a one-dimensional electron system. The DC voltage is interpreted as a thermovoltage, due to the increased temperature of the electron liquid compared to the equilibrium temperature in the leads

    Smelling in Chemically Complex Environments: An Optofluidic Bragg Fiber Array for Differentiation of Methanol Adulterated Beverages

    Get PDF
    Cataloged from PDF version of article.A novel optoelectronic nose for analysis of alcohols (ethanol and methanol) in chemically complex environments is reported. The cross-responsive sensing unit of the optoelectronic nose is an array of three distinct hollow-core infrared transmitting photonic band gap fibers, which transmit a specific band of IR light depending on their Bragg mirror structures. The presence of alcohol molecules in the optofluidic core quenches the fiber transmissions if there is an absorption band of the analyte overlapping with the transmission band of the fiber; otherwise they remain unchanged. The cumulative response data of the fiber array enables rapid, reversible, and accurate discrimination of alcohols in chemically complex backgrounds such as beer and fruit juice. In addition, we observed that humidity of the environment has no effect on the response matrix of the optoelectronic nose, which is rarely achieved in gas sensing applications Consequently, it can be reliably used in virtually any environment without precalibration for humidity or drying the analytes. Besides the discussed application in counterfeit alcoholic beverages, with its superior sensor parameters, this novel concept proves to be a promising contender for many other applications including food quality control, environmental monitoring, and breath analysis for disease diagnostics

    Effects of different cavity‑disinfectants and potassium titanyl phosphate laser on microtensile bond strength to primary dentin

    Get PDF
    Aim: The aim of this in vitro study was to compare the effects of different cavity‑disinfectants and potassium titanyl phosphate (KTP) laser on microtensile bond strength to primary dentin. Chlorhexidine (CHX), propolis (PRO), ozonated water (OW), gaseous ozone (OG) and KTP laser were used for this purpose.Methodology: Twelve primary molar teeth were used in this study. One‑third of the teeth (from coronal portion) were removed to obtain flat surfaces. After applying the cavity‑disinfectants, an adhesive (prime and bond NT) was applied to dentin surfaces, and composite crowns were built up. One group received no pretreatment and was set as a control (CONT). Ten sticks were obtained from these samples and were stressed in tension until failure using a universal testing machine and the data were recorded.Results: The mean strength values (in MPa) of the sticks were OW (11.12) > KTP (9.58) > CHX (7.58) > PRO (7.42) > CONT (6.38) > OG (5.84) and OW showed significantly higher results than the other groups, except KTP group (P < 0.05).Conclusions: OW and KTP might be used safely without compromising the bond strength of restorative materials.Key words: Chlorhexidine gluconate, potassium titanyl phosphate lasers, microtensile bond strength, ozone, primary dentine, propoli

    Photonic bandgap narrowing in conical hollow core Bragg fibers

    Get PDF
    Cataloged from PDF version of article.We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications. © 2014 AIP Publishing LLC

    Robust Cassie State of Wetting in Transparent Superhydrophobic Coatings

    Get PDF
    Cataloged from PDF version of article.This paper investigates the stability of the Cassie state of wetting in transparent superhydrophobic coatings by comparing a single-layer microporous coating with a double-layer micro/nanoporous coating. Increasing pressure resistance of superhydrophobic coatings is of interest for practical use because high external pressures may be exerted on surfaces during operation. The Cassie state stability against the external pressure of coatings was investigated by squeezing droplets sitting on surfaces with a hydrophobic plate. Droplets on the single-layer coating transformed to the Wenzel state and pinned to the surface after squeezing, whereas droplets on the double-layer micro/nanoporous coating preserved the Cassie state and rolled off the surface easily. In addition, the contact angle and contact-line diameter of water droplets during evaporation from surfaces were in situ investigated to further understand the stability of coatings against Wenzel transition. A droplet on a microporous coating gradually transformed to the Wenzel state and lost its spherical shape as the droplet volume decreased (i.e., the internal pressure of the droplet increased). The contact line of the droplet during evaporation remained almost unchanged. In contrast, a water droplet on a double-layer surface preserved its spherical shape even at the last stages of the evaporation process, where pressure differences as high as a few thousand pascals were generated. For this case, the droplet contact line retracted during evaporation and the droplet recovered the initial water contact angle. The demonstrated method for the preparation of robust transparent superhydrophobic coatings is promising for outdoor applications such as self-cleaning cover glasses for solar cells and nonwetting windows

    Surface Textured Polymer Fibers for Microfluidics

    Get PDF
    Cataloged from PDF version of article.This article introduces surface textured polymer fibers as a new platform for the fabrication of affordable microfluidic devices. Fibers are produced tens of meters-long at a time and comprise 20 continuous and ordered channels (equilateral triangle grooves with side lengths as small as 30 micrometers) on their surfaces. Extreme anisotropic spreading behavior due to capillary action along the grooves of fibers is observed after surface modification with polydopamine (PDA). These flexible fibers can be fixed on any surface - independent of its material and shape - to form three-dimensional arrays, which spontaneously spread liquid on predefined paths without the need for external pumps or actuators. Surface textured fibers offer high-throughput fabrication of complex open microfluidic channel geometries, which is challenging to achieve using current photolithography-based techniques. Several microfluidic systems are designed and prepared on either planar or 3D surfaces to demonstrate outstanding capability of the fiber arrays in control of fluid flow in both vertical and lateral directions. Surface textured fibers are well suited to the fabrication of flexible, robust, lightweight, and affordable microfluidic devices, which expand the role of microfluidics in a scope of fields including drug discovery, medical diagnostics, and monitoring food and water quality. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Coeliac trunk and common hepatic artery variations in children: an analysis with computed tomography angiography

    Get PDF
    Background: Understanding the coeliac trunk (CeT) and hepatic artery anatomy is important not only in preventing iatrogenic injuries but also in planning surgical procedures in children. Therefore, the aim of this study is to analyse the prevalence of CeT and common hepatic artery (CHA) variations in the paediatric population.   Materials and methods: One hundred and seventy-four children who underwent abdominal multidetector computed tomography (MDCT) angiography, either because of trauma or liver transplantation, were analysed retrospectively. The patterns of CeT, CHA and their variant branches were revealed and compared with previous studies involving adults.   Results: A total of 157 (90.2%) of the 174 patients had normal CeT anatomy, whereas 17 (9.8%) had variations. Five types of CeT variations were identified according to Song’s classification in which ‘hepatosplenic trunk + left gastric artery + superior mesenteric artery’ was the most prevalent. One hundred-twelve (64.4%) of the 174 patients had normal CHA anatomy; however, 62 (35.6%) had variations. Six types of CHA variations were identified according to Michel’s and Hiatt’s classification. The most common was ‘replaced left hepatic artery originating from left gastric artery’.   Conclusions: The prevalences of CeT and hepatic artery variations are high in children, as they are in older patients. Awareness of these variations is important in terms of avoiding iatrogenic injury and in promoting surgical procedure planning for liver transplantation or abdominal tumour surgery

    Pseudomembranous colitis due to clostridium difficile

    Get PDF
    Background: A 62-year-old Turkish man was referred for ultrasonography of a palpable mass in the left upper abdomen. Past medical history revealed emergency laparoscopic cholecystectomy for acute calculus cholecystitis about 6 months earlier in Turkey. On clinical examination therewas a small palpable mass with mild tenderness in the left subcostal region. Due to a language barrier it was uncertain if the swelling was present before or after the cholecystectomy. Ultrasonography revealed a calcified lesion. The differential diagnosis at that time was dystrophic calcifications or a soft tissue tumor with calcification. However, additional conventional imaging of the left subcostal region revealed no calcifications. In the work-up of a possible soft tissue tumor MRI was performed
    • …
    corecore