14 research outputs found

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation

    A ternary nanocomposite of reduced graphene oxide, Ag nanoparticle and Polythiophene used for supercapacitors

    No full text
    The ternary nanocomposites of reduced graphene oxide (rGO), Ag nanoparticles, and polythiophene (PTh), (rGO/Ag/PTh) with different initial feed ratios of [GO](o)/[Th](o) = 0.2, 0.3 and 0.4 were used in a symmetric supercapacitor device formation. rGO/Ag/PTh nanocomposite has been prepared by in-situ polymerization and chemical reduction of graphene oxide. Fourier transform infrared spectroscopy -Attenuated total reflectance (FTIR-ATR) and scanning electron microscopy (SEM) were employed in order to characterize the composition of the resulting nanocomposites and morphology. The electrochemical behavior of these nanocomposites were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopic (EIS) measurements in 1.0M H2SO4 solution. As an electroactive material, rGO/Ag/PTh nanocomposite shows good capacitive performance in acidic electrolyte solution, a high specific capacitance (up to C-sp = 953.13 F/g at a scan rate of 4 mV/s) at [GO](o)/[Th](o) = 0.2. Moreover, the rGO/Ag/PTh nanocomposites at [GO](o)/[Th](o) = 0.2 show high stability with 91.88% specific capacitance saved after 1000 charge/discharge processes. Furthermore, larger energy density (up to E = 28.8 Wh/kg at a scan rate of 5 mV/s and a power density of P = 2843.3 W/kg at a scan rate of 1000 mV/s) of the nanocomposites at [GO](o)/[Th](o) = 0.2 is obtained in 1M H2SO4 aqueous electrolyte for two-electrode device formation. This study has revealed that the rGO/Ag/PTh nanocomposite electrode materials may lead to a stable supercapacitor for portable electronic applications. [GRAPHICS] .Scientific Research Project of Namik Kemal University, Tekirdag, Turkey [NKUBAP.01.GA.16.076]Scientific Research Project of Namik Kemal University, Tekirdag, Turkey, NKUBAP.01.GA.16.076

    Genistein downregulates onco-miR-1260b and upregulates sFRP1 and Smad4 via demethylation and histone modification in prostate cancer cells

    No full text
    BACKGROUND: Recently several microRNAs (miRNAs) have been found to be regulated by genistein in cancer cells. In this study, we focused on the gene regulatory effect of genistein on microRNA and its target genes in prostate cancer (PC). METHODS: Initially, we investigated the effect of genistein on prostate cancer cells and identified that the expression of miRNA-1260b was decreased by genistein. We performed functional analyses and investigated the relationship between miRNA-1260b expression and prostate cancer patient outcomes. Two target genes (sFRP1 and Smad4) of miR-1260b were identified based on computer algorithm and 3′UTR luciferase assay was carried out to determine direct miRNA regulation of the genes. RESULTS: Genistein promoted apoptosis while inhibiting prostate cancer cell proliferation, invasion and TCF reporter activity in PC cells. MiR-1260b was highly expressed in prostate cancer tissues and significantly downregulated by genistein in PC cells. After knocking down miR-1260b, cell proliferation, invasion, migration and TCF reporter activity were decreased in PC cells. Western analysis and 3′UTR luciferase assay showed that the two target genes (sFRP1 and Smad4) were directly regulated by miR-1260b. The expression of sFRP1 and Smad4 was significantly decreased in prostate cancer tissues. Genistein also increased expression of these two genes via DNA demethylation and histone modifications. CONCLUSIONS: Our data suggest that genistein exerts its anti-tumour effect via downregulation of miR-1260b that targeted sRRP1 and Smad4 genes in prostate cancer cells. The expression of sFRP1 and Smad4 was also modulated by genistein via DNA methylation or histone modifications in PC cell lines

    Synthesis of ternary polypyrrole/Ag nanoparticle/graphene nanocomposites for symmetric supercapacitor devices

    No full text
    In this study, novel ternary synthesis of reduced graphene oxide (rGO) sheets via intercalation of Ag nanoparticles (Ag) and polypyrrole (PPy) was obtained for supercapacitor evaluations. The synthesis procedure of nanocomposite is simple, cheap, and ecologically friendly. The nanocomposites were analyzed by Fourier transform infrared-attenuated transmission reflectance (FTIR-ATR) and scanning electron microscopy-energy dispersion X-ray analysis (SEM-EDX). In addition, electrochemical performances of electrode active materials (rGO/Ag/PPy) of the samples were tested by means of galvanostatic charge/discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The highest specific capacitance and energy density of rGO/Ag/PPy nanocomposite were obtained as C-sp = 1085.22 F/g and E = 36.92 Wh/kg for [rGO](o)/[Py](o) = 1/5 at 4 mV/s in 1 M H2SO4 solution. Under the optimized preparation conditions in different initial feed ratios ([rGO](o)/[Py](o) = 1/1, A 1/2, 1/5, and 1/10) of rGO/Ag/PPy, nanocomposites acquired a high Coulombic efficiency, and a retention of 66% of its initial capacitance for [rGO](o)/[Py](o) = 1/10 after 1000 cycles. GCD and EIS measurements of rGO/Ag/PPy nanocomposite electrode active material allowed for supercapacitor applications.Namik Kemal University, Tekirdag, TurkeyNamik Kemal University [NKUBAP.01.GA. 16.076]The fact that this study was financed by Namik Kemal University, Tekirdag, Turkey, project number: NKUBAP.01.GA. 16.076 is gratefully acknowledged. Authors also thank Expert Muhammet Aydin (Namik Kemal Uni., NABILTEM, Tekirdag, Turkey) for recording SEM-EDX and FTIR-ATR measurements
    corecore