12 research outputs found

    EANM procedure guidelines for brain neurotransmission SPECT/PET using dopamine D2 receptor ligands, version 2.

    No full text
    The guidelines summarize the current views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The aims of the guidelines are to assist nuclear medicine practitioners in making recommendations, performing, interpreting and reporting the results of clinical dopamine D2 receptor SPECT or PET studies, and to achieve a high quality standard of dopamine D2 receptor imaging, which will increase the impact of this technique in neurological practice.The present document is an update of the first guidelines for SPECT using D2 receptor ligands labelled with (123)I [1] and was guided by the views of the Society of Nuclear Medicine Brain Imaging Council [2], and the individual experience of experts in European countries. The guidelines intend to present information specifically adapted to European practice. The information provided should be taken in the context of local conditions and regulations

    The impact of reconstruction and scanner characterisation on the diagnostic capability of a normal database for [(123)I]FP-CIT SPECT imaging.

    Get PDF
    The use of a normal database for [(123)I]FP-CIT SPECT imaging has been found to be helpful for cases which are difficult to interpret by visual assessment alone, and to improve reproducibility in scan interpretation. The aim of this study was to assess whether the use of different tomographic reconstructions affects the performance of a normal [(123)I]FP-CIT SPECT database and also whether systems benefit from a system characterisation before a database is used. Seventy-seven [(123)I]FP-CIT SPECT studies from two sites and with 3-year clinical follow-up were assessed quantitatively for scan normality using the ENC-DAT normal database obtained in well-documented healthy subjects. Patient and normal data were reconstructed with iterative reconstruction with correction for attenuation, scatter and septal penetration (ACSC), the same reconstruction without corrections (IRNC), and filtered back-projection (FBP) with data quantified using small volume-of-interest (VOI) (BRASS) and large VOI (Southampton) analysis methods. Test performance was assessed with and without system characterisation, using receiver operating characteristics (ROC) analysis for age-independent data and using sensitivity/specificity analysis with age-matched normal values. The clinical diagnosis at follow-up was used as the standard of truth

    European multicentre database of healthy controls for [123I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis

    No full text
    Dopamine transporter (DAT) imaging with [(123)I]FP-CIT (DaTSCAN) is an established diagnostic tool in parkinsonism and dementia. Although qualitative assessment criteria are available, DAT quantification is important for research and for completion of a diagnostic evaluation. One critical aspect of quantification is the availability of normative data, considering possible age and gender effects on DAT availability. The aim of the European Normal Control Database of DaTSCAN (ENC-DAT) study was to generate a large database of [(123)I]FP-CIT SPECT scans in healthy controls. SPECT data from 139 healthy controls (74 men, 65 women; age range 20-83 years, mean 53 years) acquired in 13 different centres were included. Images were reconstructed using the ordered-subset expectation-maximization algorithm without correction (NOACSC), with attenuation correction (AC), and with both attenuation and scatter correction using the triple-energy window method (ACSC). Region-of-interest analysis was performed using the BRASS software (caudate and putamen), and the Southampton method (striatum). The outcome measure was the specific binding ratio (SBR). A significant effect of age on SBR was found for all data. Gender had a significant effect on SBR in the caudate and putamen for the NOACSC and AC data, and only in the left caudate for the ACSC data (BRASS method). Significant effects of age and gender on striatal SBR were observed for all data analysed with the Southampton method. Overall, there was a significant age-related decline in SBR of between 4 % and 6.7 % per decade. This study provides a large database of [(123)I]FP-CIT SPECT scans in healthy controls across a wide age range and with balanced gender representation. Higher DAT availability was found in women than in men. An average age-related decline in DAT availability of 5.5 % per decade was found for both genders, in agreement with previous reports. The data collected in this study may serve as a reference database for nuclear medicine centres and for clinical trials using [(123)I]FP-CIT SPECT as the imaging marke

    European multicentre database of healthy controls for [(123)I]FP-CIT SPECT (ENC-DAT): age-related effects, gender differences and evaluation of different methods of analysis

    No full text
    Dopamine transporter (DAT) imaging with [(123)I]FP-CIT (DaTSCAN) is an established diagnostic tool in parkinsonism and dementia. Although qualitative assessment criteria are available, DAT quantification is important for research and for completion of a diagnostic evaluation. One critical aspect of quantification is the availability of normative data, considering possible age and gender effects on DAT availability. The aim of the European Normal Control Database of DaTSCAN (ENC-DAT) study was to generate a large database of [(123)I]FP-CIT SPECT scans in healthy controls.status: publishe

    Calibration of gamma camera systems for a multicentre European ¹²³I-FP-CIT SPECT normal database.

    No full text
    A satisfactory linear response was observed across all cameras. Quantitative measurements depend upon the characteristics of the SPECT systems and their calibration is a necessary prerequisite for data pooling. Together with accounting for partial volume, the correction for scatter and septal penetration is essential for accurate quantification

    Calibration of gamma camera systems for a multicentre European (123)I-FP-CIT SPECT normal database

    No full text
    PURPOSE: A joint initiative of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee and EANM Research Ltd. aimed to generate a European database of [(123)I]FP-CIT single photon emission computed tomography (SPECT) scans of healthy controls. This study describes the characterization and harmonization of the imaging equipment of the institutions involved. METHODS: (123)I SPECT images of a striatal phantom filled with striatal to background ratios between 10:1 and 1:1 were acquired on all the gamma cameras with absolute ratios measured from aliquots. The images were reconstructed by a core lab using ordered subset expectation maximization (OSEM) without corrections (NC), with attenuation correction only (AC) and additional scatter and septal penetration correction (ACSC) using the triple energy window method. A quantitative parameter, the simulated specific binding ratio (sSBR), was measured using the "Southampton" methodology that accounts for the partial volume effect and compared against the actual values obtained from the aliquots. Camera-specific recovery coefficients were derived from linear regression and the error of the measurements was evaluated using the coefficient of variation (COV). RESULTS: The relationship between measured and actual sSBRs was linear across all systems. Variability was observed between different manufacturers and, to a lesser extent, between cameras of the same type. The NC and AC measurements were found to underestimate systematically the actual sSBRs, while the ACSC measurements resulted in recovery coefficients close to 100% for all cameras (AC range 69-89%, ACSC range 87-116%). The COV improved from 46% (NC) to 32% (AC) and to 14% (ACSC) (p < 0.001). CONCLUSION: A satisfactory linear response was observed across all cameras. Quantitative measurements depend upon the characteristics of the SPECT systems and their calibration is a necessary prerequisite for data pooling. Together with accounting for partial volume, the correction for scatter and septal penetration is essential for accurate quantification.status: publishe

    The impact of reconstruction and scanner characterisation on the diagnostic capability of a normal database for {[}I-123]FP-CIT SPECT imaging

    No full text
    Background: The use of a normal database for {[}I-123]FP-CIT SPECT imaging has been found to be helpful for cases which are difficult to interpret by visual assessment alone, and to improve reproducibility in scan interpretation. The aim of this study was to assess whether the use of different tomographic reconstructions affects the performance of a normal {[}I-123] FP-CIT SPECT database and also whether systems benefit from a system characterisation before a database is used. Seventy-seven {[}I-123] FP-CIT SPECT studies from two sites and with 3-year clinical follow-up were assessed quantitatively for scan normality using the ENC-DAT normal database obtained in well-documented healthy subjects. Patient and normal data were reconstructed with iterative reconstruction with correction for attenuation, scatter and septal penetration (ACSC), the same reconstruction without corrections (IRNC), and filtered back-projection (FBP) with data quantified using small volume-of-interest (VOI) (BRASS) and large VOI (Southampton) analysis methods. Test performance was assessed with and without system characterisation, using receiver operating characteristics (ROC) analysis for age-independent data and using sensitivity/specificity analysis with age-matched normal values. The clinical diagnosis at follow-up was used as the standard of truth. Results: There were no significant differences in the age-independent quantitative assessment of scan normality across reconstructions, system characterisation and quantitative methods (ROC AUC 0.866-0.924). With BRASS quantification, there were no significant differences between the values of sensitivity (67.4-83.7\%) or specificity (79.4-91.2\%) across all reconstruction and calibration strategies. However, the Southampton method showed significant differences in sensitivity between ACSC (90.7\%) vs IRNC (76.7\%) and FBP (67.4\%) reconstructions with calibration. Sensitivity using ACSC reconstruction with this method was also significantly better with calibration than without calibration (65.1\%). Specificity using the Southampton method was unchanged across reconstruction and calibration choices (82.4-88.2\%). Conclusions: The ability of a normal {[}I-123]FP-CIT SPECT database to assess clinical scan normality is equivalent across all reconstruction, system characterisation, and quantification strategies using BRASS quantification. However, when using the Southampton quantification method, performance is sensitive to the reconstruction and calibration strategy used

    Extrastriatal binding of [I-123]FP-CIT in the thalamus and pons: gender and age dependencies assessed in a European multicentre database of healthy controls

    No full text
    PURPOSE: Apart from binding to the dopamine transporter (DAT), [(123)I]FP-CIT shows moderate affinity for the serotonin transporter (SERT), allowing imaging of both monoamine transporters in a single imaging session in different brain areas. The aim of this study was to systematically evaluate extrastriatal binding (predominantly due to SERT) and its age and gender dependencies in a large cohort of healthy controls. METHODS: SPECT data from 103 healthy controls with well-defined criteria of normality acquired at 13 different imaging centres were analysed for extrastriatal binding using volumes of interest analysis for the thalamus and the pons. Data were examined for gender and age effects as well as for potential influence of striatal DAT radiotracer binding. RESULTS: Thalamic binding was significantly higher than pons binding. Partial correlations showed an influence of putaminal DAT binding on measured binding in the thalamus but not on the pons. Data showed high interindividual variation in extrastriatal binding. Significant gender effects with 31 % higher binding in women than in men were observed in the thalamus, but not in the pons. An age dependency with a decline per decade (±standard error) of 8.2 ± 1.3 % for the thalamus and 6.8 ± 2.9 % for the pons was shown. CONCLUSION: The potential to evaluate extrastriatal predominant SERT binding in addition to the striatal DAT in a single imaging session was shown using a large database of [(123)I]FP-CIT scans in healthy controls. For both the thalamus and the pons, an age-related decline in radiotracer binding was observed. Gender effects were demonstrated for binding in the thalamus only. As a potential clinical application, the data could be used as a reference to estimate SERT occupancy in addition to nigrostriatal integrity when using [(123)I]FP-CIT for DAT imaging in patients treated with selective serotonin reuptake inhibitors.status: publishe

    Reduction in camera-specific variability in {[}I-123]FP-CIT SPECT outcome measures by image reconstruction optimized for multisite settings: impact on age-dependence of the specific binding ratio in the ENC-DAT database of healthy controls

    No full text
    Purpose Quantitative estimates of dopamine transporter availability, determined with {[}I-123]FP-CIT SPECT, depend on the SPECT equipment, including both hardware and (reconstruction) software, which limits their use in multicentre research and clinical routine. This study tested a dedicated reconstruction algorithm for its ability to reduce camera-specific intersubject variability in {[}I-123]FP-CIT SPECT. The secondary aim was to evaluate binding in whole brain (excluding striatum) as a reference for quantitative analysis. Methods Of 73 healthy subjects from the European Normal Control Database of {[}I-123]FP-CIT recruited at six centres, 70 aged between 20 and 82 years were included. SPECT images were reconstructed using the QSPECT software package which provides fully automated detection of the outer contour of the head, camera-specific correction for scatter and septal penetration by transmission-dependent convolution subtraction, iterative OSEM reconstruction including attenuation correction, and camera-specific ``to kBq/ml{''} calibration. LINK and HERMES reconstruction were used for head-to-head comparison. The specific striatal {[}I-123]FP-CIT binding ratio (SBR) was computed using the Southampton method with binding in the whole brain, occipital cortex or cerebellum as the reference. The correlation between SBR and age was used as the primary quality measure. Results The fraction of SBR variability explained by age was highest (1) with QSPECT, independently of the reference region, and (2) with whole brain as the reference, independently of the reconstruction algorithm. Conclusion QSPECT reconstruction appears to be useful for reduction of camera-specific intersubject variability of {[}I-123]FP-CIT SPECT in multisite and single-site multicamera settings. Whole brain excluding striatal binding as the reference provides more stable quantitative estimates than occipital or cerebellar binding
    corecore