4 research outputs found

    Hybrid Vigor and Heritability Estimates in Tomato Crosses Involving Solanum lycopersicum × S. pimpinellifolium under Cool Tropical Monsoon Climate

    Get PDF
    High humidity is a major constraint to increased tomato fruit production in a cool tropical monsoon climate. However, the genetic variation observed in Solanum pimpinellifolium makes it a good gene donor for breeding tomato cultivars capable of thriving under high humidity. The objective of this study was to estimate heterosis, heritability for higher yield, and to assess the adaptability of the genotypes to humid conditions. Genotypes were raised from five morphologically divergent parents, viz., wild parent (W)–“LA2093,” “CLN2498D” (D), “CLN2417H” (H), “Tima” (T), and “UC Dan INDIA” (U). The F1s were generated by biparental mating design using “LA2093” as a common pollen donor that was selfed to produce F2s and backcrossed to both parents to obtain BC1s and BC2s. The trial was laid out in a randomized complete block design with three replicates. Data were collected on selected yield-influencing traits and analyzed. “D × W” and “U × W” hybrids showed significant positive better parent heterosis for fruit weight per plant (30.4% and 35.5%) and total fruit yield (48.6% and 26.9%), respectively. The additive variance was higher than dominance variance for all the traits, including total fruit yield in all hybrids viz., “H × W,” “D × W,” “T × W,” and “U × W.” High narrow sense heritability estimate of ≥60% was observed in “D × W” and “U × W” hybrids for the majority of the floral and fruit traits including total fruit yield. This makes the improvement of “D × W” and “U × W” hybrids by direct selection advantageous. Hence, the adoption of selection for the affected traits in subsequent tomato breeding programs would enhance fruit yield and adaptability to humid environments

    Selfing revealed potential for higher yield performance than backcrossing among tomato segregating populations of Solanum lycopersicum × S. pimpinellifolium crosses under tropical humid climate

    Get PDF
    The objectives of this study were to assess and identify new source of phenotypic variability among F3 and BC1F2 tomato populations, and apply genotype by yield*trait (GYT) biplots for population and line selection based on multiple traits. Four diverse cultivated parents (‘CLN2498D’ [D] and ‘CLN2417H’ [H] from Ethiopia; ‘UC Dan INDIA’ [U] and ‘Tima’ [T] from Nigeria), and wild parent ‘LA2093’ [W] were used to generate 276 potential breeding lines. The lines were categorized into eight populations (‘pop_1_W/H1’, ‘pop_2_W/H2’, ‘pop_3_W/D1’, ‘pop_4_W/D2’, ‘pop_5_W/T1’, ‘pop_6_W/T2’, ‘pop_7_W/U1’, and ‘pop_8_W/U2’), and evaluated twice in the field using 19 × 15 alpha-lattice design with two replicates. Significant differences were observed among lines and populations for all yield enhancing traits. ‘Pop_1_W/H1’, ‘pop_4_W/D2’ and ‘pop_6_W/T2’ expressed the highest genetic divergence for plant height, number of leaves, total flower and fruit number, and fruit weight. GYT biplots revealed that all yield*trait interactions had a positive correlation with each other. F3 populations, ‘pop_5_W/T1’ and ‘pop_1_W/H1’ exhibited the best performance for majority of the yield*trait combinations. Hierarchical clustering on principal components (HCPC) revealed overlapping lines (70.58% of Cluster D lines) and (54.05% of Cluster U lines) from the two F3 populations. In BC1F2 population, 32.35% of the 34 original lines of Cluster D and 48.48% of Cluster T lines overlapped between Clusters D and T, while 18.18% of Cluster T lines and 8.82% of Cluster H lines were transgressive between Clusters T and H. Transgressive segregants ‘0210U1’, ‘0211U1’, and ‘0171T1’ of selfed population using multivariate analysis were believed to represent potential sources of novel genetic variation for future tomato breeding

    An evaluation of the exposure in nadir observation of the JEM-EUSO mission

    Get PDF
    We evaluate the exposure during nadir observations with JEM-EUSO, the Extreme Universe Space Observatory, on-board the Japanese Experiment Module of the International Space Station. Designed as a mission to explore the extreme energy Universe from space, JEM-EUSO will monitor the Earth's nighttime atmosphere to record the ultraviolet light from tracks generated by extensive air showers initiated by ultra-high energy cosmic rays. In the present work, we discuss the particularities of space-based observation and we compute the annual exposure in nadir observation. The results are based on studies of the expected trigger aperture and observational duty cycle, as well as, on the investigations of the effects of clouds and different types of background light. We show that the annual exposure is about one order of magnitude higher than those of the presently operating ground-based observatories

    JEM-EUSO : meteor and nuclearite observations

    Get PDF
    Meteor and fireball observations are key to the derivation of both the inventory and physical characterization of small solar system bodies orbiting in the vicinity of the Earth. For several decades, observation of these phenomena has only been possible via ground-based instruments. The proposed JEM-EUSO mission has the potential to become the first operational space-based platform to share this capability. In comparison to the observation of extremely energetic cosmic ray events, which is the primary objective of JEM-EUSO, meteor phenomena are very slow, since their typical speeds are of the order of a few tens of km/sec (whereas cosmic rays travel at light speed). The observing strategy developed to detect meteors may also be applied to the detection of nuclearites, which have higher velocities, a wider range of possible trajectories, but move well below the speed of light and can therefore be considered as slow events for JEM-EUSO. The possible detection of nuclearites greatly enhances the scientific rationale behind the JEM-EUSO mission
    corecore