70 research outputs found
Active Latitude Oscillations Observed on the Sun
We investigate periodicities in mean heliographic latitudes of sunspot
groups, called active latitudes, for the last six complete solar cycles
(1945-2008). For this purpose, the Multi Taper Method and Morlet Wavelet
analysis methods were used. We found the following: 1) Solar rotation
periodicities (26-38 days) are present in active latitudes of both hemispheres
for all the investigated cycles (18 to 23). 2) Both in the northern and
southern hemispheres, active latitudes drifted towards the equator starting
from the beginning to the end of each cycle by following an oscillating path.
These motions are well described by a second order polynomial. 3) There are no
meaningful periods between 55 and about 300 days in either hemisphere for all
cycles. 4) A 300 to 370 day periodicity appears in both hemispheres for Cycle
23, in the northern hemisphere for Cycle 20, and in the southern hemisphere for
Cycle 18.Comment: Accepted for publication by Solar Physic
Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-flaring Active Regions
We analyzed temporal and periodic behavior of sunspot counts (SSCs) in
flaring (C, M, or X class flares), and non-flaring active regions (ARs) for the
almost two solar cycles (1996 through 2016). Our main findings are as follows:
i) The temporal variation of monthly means of daily total SSCs in flaring and
non-flaring ARs are different and these differences are also varying from cycle
to cycle; temporal profile of non-flaring ARs are wider than the flaring ones
during the solar cycle 23, while they are almost the same during the current
cycle 24. The second peak (second maximum) of flaring ARs are strongly dominate
during current cycle 24, while this difference is not such a remarkable during
cycle 23. The amplitude of SSCs in the non-flaring ARs are comparable during
the first and second peaks (maxima) of the current solar cycle, while the first
peak is almost not existent in case of the flaring ARs. ii) Periodic variations
observed in SSCs of flaring and non-flaring ARs are quite different in both MTM
spectrum and wavelet scalograms and these variations are also different from
one cycle to another; the largest detected period in the flaring ARs is 113
days, while there are much higher periodicities (327, 312, and 256 days) in
non-flaring ARs. There are no meaningful periodicities in MTM spectrum of
flaring ARs exceeding 45 days during solar cycle 24, while a 113 days
periodicity detected from flaring ARs of solar cycle 23. For the non-flaring
ARs the largest period is 72 days during solar cycle 24, while the largest
period is 327 days during current cycle.Comment: Submitted to Solar Physics, 17 pages, 5 figure
Topology Optimization of Microchannel Heat Sinks using a Homogenization Approach
Topology optimization for heat sink devices typically relies on penalization methods to ensure the fi- nal designs are composed of strictly solid or open regions. In this work, we formulate a homogenization approach wherein the partial densities are physically represented as porous microstructures. This formu- lation allows design of thermal management components that have sub-grid features and leverages ad- ditive manufacturing techniques that can produce such partially porous regions within the build volume. Topology optimization of a liquid-cooled microchannel heat sink is presented for a hotspot over a uniform background heat input. The partial densities are represented as arrays of pin fins with varying gap sizes to achieve sub-grid-resolution features. To this end, the pin fins are modeled as a porous medium with volume-averaged effective properties. Height-averaged two-dimensional flow and non-equilibrium ther- mal models for porous media are developed for transport in the pin fin array. Through multi-objective optimization, the hydraulic and the thermal performance of the topologically optimized designs is inves- tigated. The pin fin thickness is chosen based on the minimum reliable printing feature size of state-of- the-art direct metal laser sintering machines, and the gap sizes between the pin fins are optimized. The resulting topologies have porous-membrane-like designs where the liquid is transported through a fractal network of open, low-hydraulic-resistance manifold pathways and then forced across tightly spaced ar- rays of pin fins for effective heat transfer. The effects of the grid resolution and the initial design guess on the resulting topologies and performances are reported. The topologically optimized designs are revealed to offer significant performance improvements relative to the benchmark, a straight microchannel heat sink with features optimized under the same multi-objective cost function. The work demonstrates that representing partial densities as porous microstructures results in nearly resolution-independent perfor- mance at sufficiently-small grid sizes through the use of sub-grid features
Perceptual 3D rendering based on principles of analytical cubism
Cataloged from PDF version of article.Cubism, pioneered by Pablo Picasso and Georges Braque, was a breakthrough in art, influencing artists to abandon existing traditions. In this paper, we present a novel approach for cubist rendering of 3D synthetic environments. Rather than merely imitating cubist paintings, we apply the main principles of analytical cubism to 3D graphics rendering. In this respect, we develop a new cubist camera providing an extended view, and a perceptually based spatial imprecision technique that keeps the important regions of the scene within a certain area of the output. Additionally, several methods to provide a painterly style are applied. We demonstrate the effectiveness of our extending view method by comparing the visible face counts in the images rendered by the cubist camera model and the traditional perspective camera. Besides, we give an overall discussion of final results and apply user tests in which users compare our results very well with analytical cubist paintings but not synthetic cubist paintings. (c) 2012 Elsevier Ltd. All rights reserved
Animation of boiling phenomena
Phenomenon of boiling is a challenging topic for computer graphics due to its complex hydrodynamics and formulation. Realistic fluid animations require very heavy three-dimensional fluid flow calculations, and surface estimations as well. However, realism and performance are the two important objectives of the boiling animation for a real-time application. We present an efficient method for the simulation of boiling water in this paper. The method is based on modeling the bubbles and waves as particles. Grid-based approach is used both for the heating and the fluid surface. Our technique makes it possible to produce the animation of boiling phenomena nearly in real-time. ©2008 IEEE
Maximum Coronal Mass Ejection Speed as an Indicator of Solar and Geomagnetic Activities
We investigate the relationship between the monthly averaged maximal speeds
of coronal mass ejections (CMEs), international sunspot number (ISSN), and the
geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar
cycle 23). Our new findings are as follows. (1) There is a noteworthy
relationship between monthly averaged maximum CME speeds and sunspot numbers,
Ap and Dst indices. Various peculiarities in the monthly Dst index are
correlated better with the fine structures in the CME speed profile than that
in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not
exhibit a double peak maximum. Instead, the CME speed profile peaks during the
declining phase of solar cycle 23. Similar to the Ap index, both CME speed and
the Dst indices lag behind the sunspot numbers by several months. (3) The CME
number shows a double peak similar to that seen in the sunspot numbers. The CME
occurrence rate remained very high even near the minimum of the solar cycle 23,
when both the sunspot number and the CME average maximum speed were reaching
their minimum values. (4) A well-defined peak of the Ap index between 2002 May
and 2004 August was co-temporal with the excess of the mid-latitude coronal
holes during solar cycle 23. The above findings suggest that the CME speed
index may be a useful indicator of both solar and geomagnetic activities. It
may have advantages over the sunspot numbers, because it better reflects the
intensity of Earth-directed solar eruptions
- …