858 research outputs found

    A Search For Supernova Remnants in The Nearby Spiral Galaxy M74 (NGC 628)

    Get PDF
    We have identified nine new SNR candidates in M74 with [S II]/Hα\alpha ≥\geq 0.4 as the basic criterion. We obtain [S II]/Hα\alpha ratio in the range from 0.40 to 0.91 and Hα\alpha intensities from 2.8 ×\times 10−1510^{-15} erg cm−2^{-2} s−1^{-1} to 1.7 ×\times 10−1410^{-14} erg cm−2^{-2} s−1^{-1}. We also present spectral follow-up observations of the SNR candidates and can confirm only three of them (SNR2, SNR3, and SNR5). The lack of confirmation for the rest might be due to the contamination by the nearby H II emission regions as well as due to the inaccurate positioning of the long slit on these objects. In addition, we search the ChandraChandra Observatory archival data for the X-ray counterparts to the optically identified candidates. We find positional coincidence with only three SNR candidates, SNR1, SNR2, and SNR8. The spectrum of SNR2 yields a shock temperature of 10.8 keV with an ionization timescale of 1.6 ×\times 1010^{10} s cm−3^{-3} indicating a relatively young remnant in an early Sedov phase which is not supported by our optical wavelength analysis. Given the high luminosity of 1039^{39} erg s−1^{-1} and the characteristics of the X-ray spectrum, we favor an Ultra Luminous X-ray Source interpretation for this source associated with an SNR. We calculate an X-ray flux upper limit of 9.0 ×\times 10−1510^{-15} erg cm−2^{-2} s−1^{-1} for the rest of the SNRs including spectroscopically identified SNR3 and SNR5.Comment: 10 pages, 8 figures, accepted to be published in A&

    Effects of wall orientation and thermal insulation on time lag and decrement factor

    Get PDF
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.In this study, effect of wall orientation on time lag and decrement factor is investigated numerically using an implicit finite difference method under steady periodic conditions. The investigation is carried out for three different insulation materials in the climatic conditions of Istanbul, Turkey. For this purpose, the outside surface of the wall is exposed to periodic solar radiation and outdoor environmental temperature. The inside surface is exposed to room air maintained at constant indoor design temperature. The insulation is placed at outside of wall. It is seen that as expected, as the insulation thickness increases, decrement factor decreases while time lag increases. Results show that wall orientation has a great effect on time lag while it has a small effect on decrement factor. It is seen that maximum time lag and minimum decrement factor are obtained in an east oriented wall.dc201

    The millisecond pulsar mass distribution: Evidence for bimodality and constraints on the maximum neutron star mass

    Full text link
    The mass function of neutron stars (NSs) contains information about the late evolution of massive stars, the supernova explosion mechanism, and the equation-of-state of cold, nuclear matter beyond the nuclear saturation density. A number of recent NS mass measurements in binary millisecond pulsar (MSP) systems increase the fraction of massive NSs (with M>1.8M > 1.8 M⊙_{\odot}) to ∼20%\sim 20\% of the observed population. In light of these results, we employ a Bayesian framework to revisit the MSP mass distribution. We find that a single Gaussian model does not sufficiently describe the observed population. We test alternative empirical models and infer that the MSP mass distribution is strongly asymmetric. The diversity in spin and orbital properties of high-mass NSs suggests that this is most likely not a result of the recycling process, but rather reflects differences in the NS birth masses. The asymmetry is best accounted for by a bimodal distribution with a low mass component centred at 1.393−0.029+0.0311.393_{-0.029}^{+0.031} M⊙_{\odot} and dispersed by 0.064−0.025+0.0640.064_{-0.025}^{+0.064} M⊙_{\odot}, and a high-mass component with a mean of 1.807−0.132+0.0811.807_{-0.132}^{+0.081} and a dispersion of 0.177−0.072+0.1150.177_{-0.072}^{+0.115} M⊙_{\odot}. We also establish a lower limit of Mmax≥2.018M_{max} \ge 2.018 M⊙_{\odot} at 98% C.L. for the maximum NS mass, from the absence of a high-mass truncation in the observed masses. Using our inferred model, we find that the measurement of 350 MSP masses, expected after the conclusion of pulsar surveys with the Square-Kilometre Array, can result in a precise localization of a maximum mass up to 2.15 M⊙_{\odot}, with a 5% accuracy. Finally, we identify possible massive NSs within the known pulsar population and discuss birth masses of MSPs.Comment: submitted to ApJ; 21 pages in aastex6 two-column format, 12 figures, 5 tables. Comments are welcom

    Prediction of subgrade resilient modulus for flexible pavement design

    Get PDF
    Resilient modulus of subgrade soils is an important input in mechanistic pavement design. The primary objective of this work is to investigate the resilient modulus of four typical Victorian fine-grained subgrade soils under traffic-like repeated loading and to suggest empirical predictive models incorporating physical properties and/or strength of the soils along with the stress state. A repeated load triaxial testing procedure was developed, which is capable of collecting resilient and permanent deformation data from the same specimen. Stress levels for testing were defined as percentages of the confined and/or unconfined soil static strengths. Stress dependency of resilient modulus was studied through the models (such as bilinear model, power model, deviatoris stress model and octahedral stress model) found in the literature and other possible combinations of deviator, confining and octahedral stresses. A semi-logarithmic model was proposed for the prediction of resilient modulus of the fine-grained subgrade soils. Calibration of model constants by soil properties was investigated. An altervative prediction model was also developed based on unconfined compressive strength and deviator stress. Resilient modulus values were back calculated using both the semi-logarithmic model and the model based on unconfined compressive strength and deviator stress. Predicted values were compared with the measured values. Predictive capability of the proposed models were proven for use in flexible pavement design

    Photon Propagation Around Compact Objects and the Inferred Properties of Thermally Emitting Neutron Stars

    Get PDF
    Anomalous X-ray pulsars, compact non-pulsing X-ray sources in supernova remnants, and X-ray bursters are three distinct types of sources for which there are viable models that attribute their X-ray emission to thermal emission from the surface of a neutron star. Inferring the surface area of the emitting regions in such systems is crucial in assessing the viability of different models and in providing bounds on the radii of neutron stars. We show that the inferred areas of the emitting regions may be over- or under-estimated by a factor of <=2, because of the geometry of the system and general relativistic light deflection, combined with the effects of phase averaging. Such effects make the determination of neutron-star radii uncertain, especially when compared to the ~5% level required for constraining the equation of state of neutron-star matter. We also note that, for a given spectral shape, the inferred source luminosities and pulse fractions are anticorrelated because they depend on the same properties of the emitting regions, namely their sizes and orientations, i.e., brighter sources have on average weaker pulsation amplitudes than fainter sources. We argue that this property can be used as a diagnostic tool in distinguishing between different spectral models. As an example, we show that the high inferred pulse fraction and brightness of the pulsar RXS J1708-40 are inconsistent with isotropic thermal emission from a neutron-star surface. Finally, we discuss the implication of our results for surveys in the soft X-rays for young, cooling neutron stars in supernova remnants and show that the absence of detectable pulsations from the compact source at the center of Cas A (at a level of >=30%) is not a strong argument againts its identification with a spinning neutron star.Comment: 6 pages, 6 figures, to appear in the Astrophysical Journal; minor change

    Diffuse Gamma-Ray Emission from Starburst Galaxies and M31

    Get PDF
    We present a search for high energy gamma-ray emission from 9 nearby starburst galaxies and M31 with the EGRET instrument aboard CGRO. Though the diffuse gamma-ray emission from starburst galaxies was suspected to be detectable, we find no emission from NGC 253, M82 nor from the average of all 9 galaxies. The 2 sigma upper limit for the EGRET flux above 100 MeV for the averaged survey observations is 1.8 x 10-8 ph cm-2 s-1. From a model of the expected radio and gamma-ray emission, we find that the magnetic field in the nuclei of these galaxies is > 25 micro Gauss, and the ratio of proton and electron densities is < 400. The EGRET limits indicate that the rate of massive star formation in the survey galaxies is only about an order of magnitude higher than in the Milky Way. The upper limit to the gamma-ray flux above 100 MeV for M31 is 1.6 x 10-8 ph cm-2 s-1. At the distance of M31, the Milky Way flux would be over twice this value, indicating higher gamma-ray emissivities in our Galaxy. Therefore, since the supernova rate of the Milky Way is higher than in M31, our null detection of M31 supports the theory of the supernova origin of cosmic rays in galaxies.Comment: 17 pages, plus 1 Postscript figure, AAS Latex macros v4.0, accepted for publication in ApJ Main Journa

    Replication and exploratory analysis of 24 candidate risk polymorphisms for neural tube defects.

    Get PDF
    BackgroundNeural tube defects (NTDs), which are among the most common congenital malformations, are influenced by environmental and genetic factors. Low maternal folate is the strongest known contributing factor, making variants in genes in the folate metabolic pathway attractive candidates for NTD risk. Multiple studies have identified nominally significant allelic associations with NTDs. We tested whether associations detected in a large Irish cohort could be replicated in an independent population.MethodsReplication tests of 24 nominally significant NTD associations were performed in racially/ethnically matched populations. Family-based tests of fifteen nominally significant single nucleotide polymorphisms (SNPs) were repeated in a cohort of NTD trios (530 cases and their parents) from the United Kingdom, and case-control tests of nine nominally significant SNPs were repeated in a cohort (190 cases, 941 controls) from New York State (NYS). Secondary hypotheses involved evaluating the latter set of nine SNPs for NTD association using alternate case-control models and NTD groupings in white, African American and Hispanic cohorts from NYS.ResultsOf the 24 SNPs tested for replication, ADA rs452159 and MTR rs10925260 were significantly associated with isolated NTDs. Of the secondary tests performed, ARID1A rs11247593 was associated with NTDs in whites, and ALDH1A2 rs7169289 was associated with isolated NTDs in African Americans.ConclusionsWe report a number of associations between SNP genotypes and neural tube defects. These associations were nominally significant before correction for multiple hypothesis testing. These corrections are highly conservative for association studies of untested hypotheses, and may be too conservative for replication studies. We therefore believe the true effect of these four nominally significant SNPs on NTD risk will be more definitively determined by further study in other populations, and eventual meta-analysis
    • …
    corecore