5 research outputs found

    Genetic and clinical variations of developmental epileptic encephalopathies

    Get PDF
    Objective: The concept of 'developmental and epileptic encephalopathy (DEE)' recognises that in infants presenting with severe early-onset epilepsy, neurodevelopmental comorbidity may be attributable to both the underlying cause and to adverse effects of uncontrolled epileptic activity. There is no direct genotype - phenotype correlation in DEEs. This study aimed to report the genetic and phenotypic differences in patients with DEE. Methods: Genetic evaluations of the patients were performed due to epilepsy combined with developmental delay, epileptic encephalopathy, motor deficits, autistic features, or cognitive impairment. Patients were assessed for demographic characteristics, medical history, family history, psychomotor development, seizure control interventions, electroencephalogram (EEG) and magnetic resonance imaging (MRI) findings. Results: This study included 20 children aged 0-16 years who were diagnosed as having DEE.The types of DEE detected in our study were DEE 2, 4, 6B, 7, 11, 26, 30, 33, 35, 42, 58, 62, and 67.Status epilepticus was recorded in only DEE7. The most common EEG abnormality was multifocal epileptic discharges (35%,) followed by burst-suppression patterns in patients with neonatal-onset seizures. Thirteen of the children were aged over 2 years, two (15%) were non-ambulatory and six (46%) were non-verbal. MRI scans were normal in 80% of the patients. Refractory epilepsy seen in 33% of cases.De-novo mutation, microcephaly and dysmorphic findings accompany resistant seizures and are associated with poor prognosis Discussion: For patients with movement disorders, developmental delay, autism, and ID with or without epilepsy in any period of their life, next-generation sequencing is the only diagnostic technique available, with genetic analysis often being the only diagnostic method

    Emergency brain imaging findings in children with first afebril convulsion

    No full text
    Convulsion is the most common neurological disease seen in childhood and constitutes 4-10% of all neurological diseases and 2% of the admissions to child emergency rooms. While the primary purpose of performing emergency neuroimaging in a child presenting with the first afebrile convulsion is to investigate intracranial pathologies that may require urgent intervention. The cranial imaging to be performed for this purpose are transfontanellar ultrasonography, computed tomography, and magnetic resonance imaging. We aimed to evaluate the necessity, the contribution to diagnosis, and the effect of treatment of magnetic resonance imaging that was performed in the emergency rooms. Patients who were admitted to the pediatric emergency room for a one-year complaint of their first afebrile convulsion and performed brain magnetic resonance imaging in the pediatric emergency room within the first 24 hours of hospital admission were evaluated retrospectively. A statistically significant correlation was found between the abnormal magnetic resonance imaging and abnormal physical examination of the patients (p [Med-Science 2022; 11(4.000): 1577-80

    Lathosterolosis: a rare cholesterol metabolism disorder with a wide range of clinical variability

    No full text
    Objectives: Lathosterolosis is a rare autosomal recessive congenital disease that occurs due to homozygous or compound heterozygous mutations in the sterol C5-desaturase (SC5D) gene. We report a male patient with biallelic missense variant detected in the SC5D gene.Case presentation: An eight-month-old male patient was referred to the department of paediatric neurology for status epilepticus. He had no remarkable dysmorphic features except micrognathia, ptotic ear and thin-stranded hair. Laboratory tests revealed an alanine aminotransferase level of 502 IU/L and an aspartate aminotransferase level of 279 IU/L; other biochemical test results were normal. The brain MRI revealed atrophic changes in both hemispheres. A decrease in the volume of brain stem and thin corpus callosum were noticeable. Whole exome sequencing was performed because of consanguineous marriage and sibling death in his medical history, and the encountered features were consistent with suspected neurometabolic disease in the cranial imaging and the presence of borderline psychomotor retardation. A biallelic missense variant, c.656T > C p.(Leu219Ser), was identified in the SC5D gene.Conclusions: Lathosterolosis is a rare cholesterol metabolism disorder and can be presented with a wide range of clinical features by newly reported cases. Lathosterolosis should be considered in cases with cataracts, delayed neuromotor developmental milestones and high levels of live

    Evaluating the brainstem in children with breathholding spells

    Get PDF
    OBJECTIVE: Breath-holding spells (BHSs) are a non-epileptic paroxysmal phenomenon characterized by frequent apnea episodes, loss of consciousness, and changes in skin tone and postural tone triggered by negative stimuli of childhood. The pathophysiology of the disease remains unclear; autonomic dysregulation caused by delayed myelination is believed to play a role. In this study, we aimed to evaluate the brainstems of children with BHS using diffusion tensor imaging (DTI) and investigate the etiology of this phenomenon. METHODS: The study group consisted of 16 children with a history of severe breath-holding episodes (accompanied by loss of consciousness and tonic contraction due to prolonged anoxic response) and 18 age-, gender-, and handedness-matched controls. All children underwent systemic, neurologic, and cardiologic evaluation, including complete blood count, blood bio-chemistry, serum iron and ferritin level, serum vitamin B12 level, electrocardiogram, and electroencephalograms. Magnetic resonance imaging was performed using a 1.5-Tesla Siemens Aera scanner (Siemens, Germany). RESULTS: Evaluation of brainstem (midbrain, pons, and medulla oblongata) volumes revealed no statistically significant differences between the BHS patient and control groups. In a voxel-wise analysis of DTI data, the BHS patient group had significantly lower fractional anisotropy (FA) values than the control group in the bilateral midbrain and medulla, right cortico-spinal tract, bilateral corpus callosum body and splenium, and left corpus callosum genu. In contrast, there were no significant differences in FA values in the pons, cerebellum, left corticospinal tract, and right corpus callosum genu. CONCLUSION: Based on our findings, we think that patients with BHS should be treated with an approach similar to other neurodevelopmental diseases and that this study may help elucidate the pathophysiology and establish the groundwork for future studies on its treatment
    corecore