11 research outputs found

    Comparative mitochondrial proteomics: perspective in human diseases

    Get PDF
    Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Utility of Hard Exudates for the Screening of Macular Edema

    No full text
    ABSTRACT Purpose. The purpose of this study was to determine whether hard exudates (HEs) within one disc diameter of the foveola is an acceptable criterion for the referral of diabetic patients suspected of clinically significant macular edema (CSME) in a screening setting. Methods. One hundred forty-three adults diagnosed as having diabetes mellitus were imaged using a nonmydriatic digital fundus camera at the Alameda County Medical Center in Oakland, CA. Nonstereo fundus images were graded independently for the presence of HE near the center of the macula by two graders according to the EyePACS grading protocol. The patients also received a dilated fundus examination on a separate visit. Clinically significant macular edema was determined during the dilated fundus examination using the criteria set forth by the Early Treatment Diabetic Retinopathy Study. Subsequently, the sensitivity and specificity of HEs within one disc diameter of the foveola in nonstereo digital images used as a surrogate for the detection of CSME diagnosed by live fundus examination were calculated. Results. The mean (TSD) age of 103 patients included in the analysis was 56 T 17 years. Clinically significant macular edema was diagnosed in 15.5% of eyes during the dilated examination. For the right eyes, the sensitivity of HEs within one disc diameter from the foveola as a surrogate for detecting CSME was 93.8% for each of the graders; the specificity values were 88.5 and 85.1%. For the left eyes, the sensitivity values were 93.8 and 75% for each of the two graders, respectively; the specificity was 87.4% for both graders. Conclusions. This study supports the use of HE within a disc diameter of the center of the macula in nonstereo digital images for CSME detection in a screening setting. (Optom Vis Sci 2014;91:00Y00

    The International Linear Collider: Report to Snowmass 2021

    No full text
    International audienceThe International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community

    The International Linear Collider: Report to Snowmass 2021

    No full text
    The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community
    corecore