211 research outputs found

    Immunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with Plasmodium berghei

    Get PDF
    BACKGROUND: The Plasmodium protein Cell-traversal protein for ookinetes and sporozoites (CelTOS) plays an important role in cell traversal of host cells in both, mosquito and vertebrates, and is required for successful malaria infections. CelTOS is highly conserved among the Plasmodium species, suggesting an important functional role across all species. Therefore, targeting the immune response to this highly conserved protein and thus potentially interfering with its biological function may result in protection against infection even by heterologous species of Plasmodium. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we developed a recombinant codon-harmonized P. falciparum CelTOS protein that can be produced to high yields in the E. coli expression system. Inbred Balb/c and outbred CD-1 mice were immunized with various doses of the recombinant protein adjuvanted with Montanide ISA 720 and characterized using in vitro and in vivo analyses. CONCLUSIONS/SIGNIFICANCE: Immunization with PfCelTOS resulted in potent humoral and cellular immune responses and most importantly induced sterile protection against a heterologous challenge with P. berghei sporozoites in a proportion of both inbred and outbred mice. The biological activity of CelTOS-specific antibodies against the malaria parasite is likely linked to the impairment of sporozoite motility and hepatocyte infectivity. The results underscore the potential of this antigen as a pre-erythrocytic vaccine candidate and demonstrate for the first time a malaria vaccine that is cross-protective between species

    Search for CP violation in the decay B0->D*+-D-+

    Get PDF
    We report a search for CP-violating asymmetry in B0 -> D*+- D-+ decays. The analysis employs two methods of B0 reconstruction: full and partial. In the full reconstruction method all daughter particles of the B0 are required to be detected; the partial reconstruction technique requires a fully reconstructed D- and only a slow pion from the D*+ -> D0 pi_slow+ decay. From a fit to the distribution of the time interval corresponding to the distance between two B meson decay points we calculate the CP-violating parameters and find the significance of nonzero CP asymmetry to be 2.7 standard deviations.Comment: 4 pages, 3 figure

    Studies of the Decay B+- -> D_CP K+-

    Get PDF
    We report studies of the decay B+- -> D_CP K+-, where D_CP denotes neutral D mesons that decay to CP eigenstates. The analysis is based on a 29.1/fb data sample of collected at the \Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e+ e- storage ring. Ratios of branching fractions of Cabibbo-suppressed to Cabibbo-favored processes involving D_CP are determined to be B(B- -> D_1 K-)/B(B- -> D_1 pi-)=0.125 +- 0.036 +- 0.010 and B(B- -> D_2 K-)/B(B- -> D_2 pi-)=0.119 +- 0.028 +- 0.006, where indices 1 and 2 represent the CP=+1 and CP=-1 eigenstates of the D0 - anti D0 system, respectively. We also extract the partial rate asymmetries for B+- -> D_CP K+-, finding A_1 = 0.29 +- 0.26 +- 0.05 and A_2 = -0.22 +- 0.24 +- 0.04.Comment: 10 pages, 2 figures, submitted to Physical Review Letter

    Detection of partial-thickness supraspinatus tendon tears: is a single direct MR arthrography series in ABER position as accurate as conventional MR arthrography?

    Get PDF
    The purpose of this study was to retrospectively evaluate sensitivity and specificity of a single magnetic resonance (MR) arthrography series in abduction external rotation (ABER) position compared with conventional MR arthrography for detection of supraspinatus tendon tears, with arthroscopy as gold standard, and to assess interobserver variability. Institutional review board approval was obtained; informed consent was waived. MR arthrograms of 250 patients (170 men and 80 women; mean age, 36 years) were retrospectively and independently evaluated by three observers. Oblique coronal T1-weighted fat-suppressed images, proton density, and T2-weighted images and axial T1-weighted images and oblique sagittal T1-weighted fat-suppressed images were analyzed to detect supraspinatus tendon tears. Separately, a single T1-weighted fat-suppressed oblique axial series in ABER position was evaluated. Both protocols were scored randomly without knowledge of patients' clinical history and arthroscopy results. Tears were subclassified, based on articular surface integrity and extension (Lee classification). Interobserver agreement was assessed by kappa statistics for all patients. Ninety-two of 250 patients underwent arthroscopy; sensitivity and specificity of ABER and conventional MR arthrography were calculated and compared using paired McNemar test. Weighted kappa values of ABER and conventional MR arthrography were 0.48-0.65 and 0.60-0.67, respectively. According to arthroscopy, 69 of 92 patients had an intact cuff, and 23 patients had a cuff tear (16 partial thickness and seven full thickness). There were no statistically significant differences between ABER and conventional MR arthrography regarding sensitivity (48-61% and 52-70%, respectively) and specificity (80-94% and 91-95%). Sensitivity and specificity of a single T1-weighted series in ABER position and conventional MR arthrography are comparable for assessment of rotator cuff tear

    Adenylyl Cyclase α and cAMP Signaling Mediate Plasmodium Sporozoite Apical Regulated Exocytosis and Hepatocyte Infection

    Get PDF
    Malaria starts with the infection of the liver of the host by Plasmodium sporozoites, the parasite form transmitted by infected mosquitoes. Sporozoites migrate through several hepatocytes by breaching their plasma membranes before finally infecting one with the formation of an internalization vacuole. Migration through host cells induces apical regulated exocytosis in sporozoites. Here we show that apical regulated exocytosis is induced by increases in cAMP in sporozoites of rodent (P. yoelii and P. berghei) and human (P. falciparum) Plasmodium species. We have generated P. berghei parasites deficient in adenylyl cyclase α (ACα), a gene containing regions with high homology to adenylyl cyclases. PbACα-deficient sporozoites do not exocytose in response to migration through host cells and present more than 50% impaired hepatocyte infectivity in vivo. These effects are specific to ACα, as re-introduction of ACα in deficient parasites resulted in complete recovery of exocytosis and infection. Our findings indicate that ACα and increases in cAMP levels are required for sporozoite apical regulated exocytosis, which is involved in sporozoite infection of hepatocytes

    Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2

    Get PDF
    Cardiac atrial natriuretic peptide (ANP) locally counteracts cardiac hypertrophy via the guanylyl cyclase-A (GC-A) receptor and cGMP production, but the downstream signalling pathways are unknown. Here, we examined the influence of ANP on β-adrenergic versus Angiotensin II (Ang II)-dependent (Gs vs. Gαq mediated) modulation of Ca2+i-handling in cardiomyocytes and of hypertrophy in intact hearts. L-type Ca2+ currents and Ca2+i transients in adult isolated murine ventricular myocytes were studied by voltage-clamp recordings and fluorescence microscopy. ANP suppressed Ang II-stimulated Ca2+ currents and transients, but had no effect on isoproterenol stimulation. Ang II suppression by ANP was abolished in cardiomyocytes of mice deficient in GC-A, in cyclic GMP-dependent protein kinase I (PKG I) or in the regulator of G protein signalling (RGS) 2, a target of PKG I. Cardiac hypertrophy in response to exogenous Ang II was significantly exacerbated in mice with conditional, cardiomyocyte-restricted GC-A deletion (CM GC-A KO). This was concomitant to increased activation of the Ca2+/calmodulin-dependent prohypertrophic signal transducer CaMKII. In contrast, β-adrenoreceptor-induced hypertrophy was not enhanced in CM GC-A KO mice. Lastly, while the stimulatory effects of Ang II on Ca2+-handling were absent in myocytes of mice deficient in TRPC3/TRPC6, the effects of isoproterenol were unchanged. Our data demonstrate a direct myocardial role for ANP/GC-A/cGMP to antagonize the Ca2+i-dependent hypertrophic growth response to Ang II, but not to β-adrenergic stimulation. The selectivity of this interaction is determined by PKG I and RGS2-dependent modulation of Ang II/AT1 signalling. Furthermore, they strengthen published observations in neonatal cardiomyocytes showing that TRPC3/TRPC6 channels are essential for Ang II, but not for β-adrenergic Ca2+i-stimulation in adult myocytes

    Friends and Foes from an Ant Brain's Point of View – Neuronal Correlates of Colony Odors in a Social Insect

    Get PDF
    Background: Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like ‘‘friend’’ and ‘‘foe’’ are attributed to colony odors. Methodology/Principal Findings: Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. Conclusions: Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors

    Search for D-0-D-0(-) mixing in D-0 -> K+pi(-) decays and measurement of the doubly-Cabibbo-suppressed decay rate

    Get PDF
    We have searched for mixing in the Ddegrees-(D) over cap (0) D-0 system by measuring the decay-time distribution of D0 ! K(+)pi(-) decays. The analysis uses 90 fb(-1) of data collected by the Belle detector at the KEKB e(+) e(-) collider. We fit the decay-time distribution for the mixing parameters x(1) and y(1) and also for the parameter R-D, which is the ratio of the rate for the doubly-Cabibbo-suppressed decay D-0--> K(+)pi(-) to that for the Cabibbo-favored decay D-0 --> K- pi(+). We do these fits both assuming CP conservation and allowing for CP violation. We use a frequentist method to obtain a 95% C. L. region in the x(J2)- y(l) plane. Assuming no mixing, we measure R-D=(0: 381 +/- 0: 017 (+) (0.008)(-0.016))%

    Measurements of the branching fraction and polarization in B+->rho K-+(*0) decays

    Get PDF
    We present the results of a study of the charmless vector-vector decay B+->rho K-+(*0), based on 253 fb(-1) of data collected with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. We obtain the branching fraction B(B+->rho K-+(*0))=[8.9 +/- 1.7(stat)+/- 1.2(syst)]x10(-6). We also perform a helicity analysis of the rho and K-* vector mesons, and obtain the longitudinal polarization fraction f(L)(B+->rho K-+(*0))=0.43 +/- 0.11(stat)(-0.02)(+0.05)(syst)
    corecore