32 research outputs found

    Novel pharmacological maps of protein lysine methyltransferases: key for target deorphanization

    Get PDF
    Epigenetic therapies are being investigated for the treatment of cancer, cognitive disorders, metabolic alterations and autoinmune diseases. Among the diferent epigenetic target families, protein lysine methyltransferases (PKMTs), are especially interesting because it is believed that their inhibition may be highly specifc at the functional level. Despite its relevance, there are currently known inhibitors against only 10 out of the 50 SET-domain containing members of the PKMT family. Accordingly, the identifcation of chemical probes for the validation of the therapeutic impact of epigenetic modulation is key. Moreover, little is known about the mechanisms that dictate their substrate specifcity and ligand selectivity. Consequently, it is desirable to explore novel methods to characterize the pharmacological similarity of PKMTs, going beyond classical phylogenetic relationships. Such characterization would enable the prediction of ligand of-target efects caused by lack of ligand selectivity and the repurposing of known compounds against alternative targets. This is particularly relevant in the case of orphan targets with unreported inhibitors. Here, we frst perform a systematic study of binding modes of cofactor and substrate bound ligands with all available SET domain-containing PKMTs. Protein ligand interaction fngerprints were applied to identify conserved hot spots and contact-specifc residues across subfamilies at each binding site; a relevant analysis for guiding the design of novel, selective compounds. Then, a recently described methodology (GPCR-CoINPocket) that incorporates ligand contact information into classical alignment-based comparisons was applied to the entire family of 50 SET-containing proteins to devise pharmacological similarities between them. The main advantage of this approach is that it is not restricted to proteins for which crystallographic data with bound ligands is available. The resulting family organization from the separate analysis of both sites (cofactor and substrate) was retrospectively and prospectively validated. Of note, three hits (inhibition>50% at 10 ”M) were identifed for the orphan NSD1

    Towards the understanding of the activity of G9a inhibitors: an activity landscape and molecular modeling approach

    Get PDF
    In this work, we analyze the structure–activity relationships (SAR) of epigenetic inhibitors (lysine mimetics) against lysine methyltransferase (G9a or EHMT2) using a combined activity landscape, molecular docking and molecular dynamics approach. The study was based on a set of 251 G9a inhibitors with reported experimental activity. The activity landscape analysis rapidly led to the identifcation of activity clifs, scafolds hops and other active an inactive molecules with distinct SAR. Structure-based analysis of activity clifs, scafold hops and other selected active and inactive G9a inhibitors by means of docking followed by molecular dynamics simulations led to the identifcation of interactions with key residues involved in activity against G9a, for instance with ASP 1083, LEU 1086, ASP 1088, TYR 1154 and PHE 1158. The outcome of this work is expected to further advance the development of G9a inhibitors

    CHEMDNER: The drugs and chemical names extraction challenge

    Get PDF
    Natural language processing (NLP) and text mining technologies for the chemical domain (ChemNLP or chemical text mining) are key to improve the access and integration of information from unstructured data such as patents or the scientific literature. Therefore, the BioCreative organizers posed the CHEMDNER (chemical compound and drug name recognition) community challenge, which promoted the development of novel, competitive and accessible chemical text mining systems. This task allowed a comparative assessment of the performance of various methodologies using a carefully prepared collection of manually labeled text prepared by specially trained chemists as Gold Standard data. We evaluated two important aspects: one covered the indexing of documents with chemicals (chemical document indexing - CDI task), and the other was concerned with finding the exact mentions of chemicals in text (chemical entity mention recognition - CEM task). 27 teams (23 academic and 4 commercial, a total of 87 researchers) returned results for the CHEMDNER tasks: 26 teams for CEM and 23 for the CDI task. Top scoring teams obtained an F-score of 87.39% for the CEM task and 88.20% for the CDI task, a very promising result when compared to the agreement between human annotators (91%). The strategies used to detect chemicals included machine learning methods (e.g. conditional random fields) using a variety of features, chemistry and drug lexica, and domain-specific rules. We expect that the tools and resources resulting from this effort will have an impact in future developments of chemical text mining applications and will form the basis to find related chemical information for the detected entities, such as toxicological or pharmacogenomic properties

    Trimethylamine-N-Oxide (TMAO) Predicts Cardiovascular Mortality in Peripheral Artery Disease

    Get PDF
    Peripheral artery disease (PAD) is a major cause of acute and chronic illness, with extremely poor prognosis that remains underdiagnosed and undertreated. Trimethylamine-N-Oxide (TMAO), a gut derived metabolite, has been associated with atherosclerotic burden. We determined plasma levels of TMAO by mass spectrometry and evaluated their association with PAD severity and prognosis. 262 symptomatic PAD patients (mean age 70 years, 87% men) categorized in intermittent claudication (IC, n = 147) and critical limb ischemia (CLI, n = 115) were followed-up for a mean average of 4 years (min 1-max 102 months). TMAO levels were increased in CLI compared to IC (P 2.26 ”mol/L exhibited higher risk of cardiovascular death (sub-hazard ratios ≄2, P < 0.05) that remained significant after adjustment for confounding factors. TMAO levels were associated to disease severity and CV-mortality in our cohort, suggesting an improvement of PAD prognosis with the measurement of TMAO. Overall, our results indicate that the intestinal bacterial function, together with the activity of key hepatic enzymes for TMA oxidation (FMO3) and renal function, should be considered when designing therapeutic strategies to control gut-derived metabolites in vascular patients

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    The CHEMDNER corpus of chemicals and drugs and its annotation principles

    Get PDF
    The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of different approaches that detect chemicals in documents. We present the CHEMDNER corpus, a collection of 10,000 PubMed abstracts that contain a total of 84,355 chemical entity mentions labeled manually by expert chemistry literature curators, following annotation guidelines specifically defined for this task. The abstracts of the CHEMDNER corpus were selected to be representative for all major chemical disciplines. Each of the chemical entity mentions was manually labeled according to its structure-associated chemical entity mention (SACEM) class: abbreviation, family, formula, identifier, multiple, systematic and trivial. The difficulty and consistency of tagging chemicals in text was measured using an agreement study between annotators, obtaining a percentage agreement of 91. For a subset of the CHEMDNER corpus (the test set of 3,000 abstracts) we provide not only the Gold Standard manual annotations, but also mentions automatically detected by the 26 teams that participated in the BioCreative IV CHEMDNER chemical mention recognition task. In addition, we release the CHEMDNER silver standard corpus of automatically extracted mentions from 17,000 randomly selected PubMed abstracts. A version of the CHEMDNER corpus in the BioC format has been generated as well. We propose a standard for required minimum information about entity annotations for the construction of domain specific corpora on chemical and drug entities. The CHEMDNER corpus and annotation guidelines are available at: http://www.biocreative.org/resources/biocreative-iv/chemdner-corpus

    Novel pharmacological maps of protein lysine methyltransferases: key for target deorphanization

    No full text
    Epigenetic therapies are being investigated for the treatment of cancer, cognitive disorders, metabolic alterations and autoinmune diseases. Among the diferent epigenetic target families, protein lysine methyltransferases (PKMTs), are especially interesting because it is believed that their inhibition may be highly specifc at the functional level. Despite its relevance, there are currently known inhibitors against only 10 out of the 50 SET-domain containing members of the PKMT family. Accordingly, the identifcation of chemical probes for the validation of the therapeutic impact of epigenetic modulation is key. Moreover, little is known about the mechanisms that dictate their substrate specifcity and ligand selectivity. Consequently, it is desirable to explore novel methods to characterize the pharmacological similarity of PKMTs, going beyond classical phylogenetic relationships. Such characterization would enable the prediction of ligand of-target efects caused by lack of ligand selectivity and the repurposing of known compounds against alternative targets. This is particularly relevant in the case of orphan targets with unreported inhibitors. Here, we frst perform a systematic study of binding modes of cofactor and substrate bound ligands with all available SET domain-containing PKMTs. Protein ligand interaction fngerprints were applied to identify conserved hot spots and contact-specifc residues across subfamilies at each binding site; a relevant analysis for guiding the design of novel, selective compounds. Then, a recently described methodology (GPCR-CoINPocket) that incorporates ligand contact information into classical alignment-based comparisons was applied to the entire family of 50 SET-containing proteins to devise pharmacological similarities between them. The main advantage of this approach is that it is not restricted to proteins for which crystallographic data with bound ligands is available. The resulting family organization from the separate analysis of both sites (cofactor and substrate) was retrospectively and prospectively validated. Of note, three hits (inhibition>50% at 10 ”M) were identifed for the orphan NSD1

    Towards the understanding of the activity of G9a inhibitors: an activity landscape and molecular modeling approach

    No full text
    In this work, we analyze the structure–activity relationships (SAR) of epigenetic inhibitors (lysine mimetics) against lysine methyltransferase (G9a or EHMT2) using a combined activity landscape, molecular docking and molecular dynamics approach. The study was based on a set of 251 G9a inhibitors with reported experimental activity. The activity landscape analysis rapidly led to the identifcation of activity clifs, scafolds hops and other active an inactive molecules with distinct SAR. Structure-based analysis of activity clifs, scafold hops and other selected active and inactive G9a inhibitors by means of docking followed by molecular dynamics simulations led to the identifcation of interactions with key residues involved in activity against G9a, for instance with ASP 1083, LEU 1086, ASP 1088, TYR 1154 and PHE 1158. The outcome of this work is expected to further advance the development of G9a inhibitors

    Mechanism and structure-activity relationships of norspermidine-based peptidic inhibitors of trypanothione reductase

    No full text
    A library of polyamine-peptide conjugates based around some previously identified inhibitors of trypanothione reductase was synthesised by parallel solid-phase chemistry and screened. Kinetic analysis of library members established that subtle structural changes altered their mechanism of action, switching between competitive and non-competitive inhibition. The mode of action of the non-competitive inhibitors was investigated in detail by a variety of techniques including enzyme kinetic analysis (looking at both NADPH and trypanothione disulfide substrates), gel filtration chromatography and analytical ultracentrifugation, leading to the identification of an allosteric mode of inhibition

    Defining the mechanism of action of 4-phenylbutyrate to develop a small-molecule-based therapy for Alzheimer's disease.

    No full text
    4-phenylbutyrate (PBA) is a small molecule that restores cognitive deficits in animal models of Alzheimer's disease (AD). Although the molecular basis of the cognitive benefits of PBA remains unknown, a multi-modal/multi-target mechanism has been proposed. Putative targets of this drug are different from those of drugs that are now used in clinical trials. As PBA is already administered to patients with congenital defects affecting enzymes in the urea cycle, it can be rapidly tested in AD clinical trials. However, the main drawback to its therapeutic use is the high dosage required (up to 15 g/day). Thus, deciphering the precise mechanism(s) of action of this drug may enable novel drugs with similar therapeutic effects to PBA to be developed that can be used at more manageable doses
    corecore