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Abstract
In this work, we analyze the structure–activity relationships (SAR) of epigenetic inhibitors (lysine mimetics) against lysine 
methyltransferase (G9a or EHMT2) using a combined activity landscape, molecular docking and molecular dynamics 
approach. The study was based on a set of 251 G9a inhibitors with reported experimental activity. The activity landscape 
analysis rapidly led to the identification of activity cliffs, scaffolds hops and other active an inactive molecules with distinct 
SAR. Structure-based analysis of activity cliffs, scaffold hops and other selected active and inactive G9a inhibitors by means 
of docking followed by molecular dynamics simulations led to the identification of interactions with key residues involved 
in activity against G9a, for instance with ASP 1083, LEU 1086, ASP 1088, TYR 1154 and PHE 1158. The outcome of this 
work is expected to further advance the development of G9a inhibitors.
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Introduction

The study of diseases based on epigenetic approaches is cru-
cial for the development of new therapeutic alternatives [1]. 
Protein lysine methyltransferases (PKMTs) have attracted 
much interest in the drug discovery field as their inhibition 
is believed to be specific at the functional level [2]. Particu-
larly, G9a [also known as KMT1C (lysine methyltransferase 
1C) or EHMT2 (euchromatic histone methyltransferase 2)] 
is a histone-lysine N-methyltransferase that catalyzes the 
transfer of one or two methyl groups to the ε-amino group 
of lysine 9 of histone H3 (H3K9me1 and H3K9me2), a hall-
mark associated with transcriptional gene silencing. Other 
protein targets of G9 include the tumor suppressor p53, 

whose methylation leads to its inactivation [3, 4]. G9a is 
upregulated in various cancers, and its overexpression has 
been associated with poor prognosis and metastasis [5–8]. 
In addition, a very recent study reveals that G9a expres-
sion is significantly associated with resistance to immuno-
therapy, programmed cell death protein 1 (PD1) inhibition, 
in a cohort of bladder cancer patients [9]. Moreover, G9a 
is involved in the maintenance of HIV-1 latency, cognitive 
disturbances (mental retardation, cocaine addiction, age-
related cognitive decline), embryonic development, colitis, 
regulation of the cell cycle, and stem cell reprogramming, 
which has been used to produce inducible pluripotent stem 
cells (iPSCs) [10–15].

There is a large variety of compounds synthesized and 
evaluated against G9a [16]. Distinct structural classes are 
quinoline and indole derivatives (Fig. 1). Reports have 
shown the influence of substituents on the activity for 
each structural class. For instance, lysine mimetic sub-
stituents (positively charged) have been shown to have a 
higher affinity for the substrate pocket on G9a. Examples 
are the small molecules 23 m, CHEMBL3109631, and 
WO2017142947A1-4 (Fig. 1). Similarly, there are reports 
suggesting that the lysine mimetic substituents promote key 
interactions with residues involved in enzymatic inhibition, 
such as TYR 1067, LEU 1086, TYR 1154, and PHE 1152 
[17–20]. However, it is necessary to compare the binding 
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mode and the molecular geometry of the inhibitors consid-
ering the different molecular scaffolds in the same study.

Recently, the structure–activity relationships (SAR) 
of G9a inhibitors has been explored using the concept of 
activity landscape modeling [21, 22]. In that work, the dual 
activity of inhibitors with a quinoline scaffold has been pre-
dominantly explored. These studies allowed the identifica-
tion of key substituents in the selectivity and efficacy of 
compounds.

The objective of this paper was to further explore the 
SAR of G9a ligands using the established concept of the 
activity landscape model and molecular docking followed 
by molecular dynamics.

Materials and methods

Data set

This study is based on a data set of 251 compounds derived 
from aminoquinoline, indole and acridine core with reported 
activity against G9a  (IC50) [21, 23, 24]. All compounds 
were retrieved from the public database ChEMBL, except 
for compounds based on the acridine core, that are reported 
in patents [19, 23–25]. The SMILES representation of 
the structures and  pIC50 (− log  IC50) values are listed in 
Table S1 in the supplementary material. The  pIC50 values 
range from 9.30 to 5.0 [26].

Software and online resources

The activity landscape analysis was carried out with Activ-
ity Landscape Plotter, an open web tool (https ://www.
difac quim.com/d-tools /) that enables the analysis of SAR 
of screening data sets [27]. This tool facilitates a first and 
rapid exploration of the SAR of compound data sets with 
a common scaffold and rapid decomposition of R-groups 
[28]. Molecular docking was performed with the software 
Yasara (YASARA Biosciences GmbH, Vienna, AUT). 
Molecular dynamics (MD) studies were done with Desmond 
(Schrödinger, New York, NY, USA) [29].

Activity landscape modeling

A structure–activity similarity (SAS) map is a tool for SAR 
analysis of compound data sets tested against a molecular 
target. SAS maps are based on the concept of activity land-
scape and are suited for the rapid identification of activity 
cliffs (AC), defined as compounds with a high structure sim-
ilarity but unexpected large activity difference [30, 31]. SAS 
maps also enable the identification of scaffold hops (SH), 
defined as compounds with low structural similarity due to 
differences in their scaffold but similar biological activity. 
This concept has been useful in medicinal chemistry to iden-
tify and develop novel and diverse chemical entities [32].

Since SAS maps are based on systematic pairwise com-
parisons of the compounds in a data set, the SAS maps gen-
erated in this work represented all 31,375 pairwise compari-
sons between the 251 compounds of the set. To generate the 
map, the structural similarity was calculated with the ECFP4 
fingerprint and the Tanimoto coefficient and was represented 
on the X-axis. The activity difference (in logarithmic scale) 
was plotted on the Y-axis. To differentiate the four major 
regions in the SAS map, two thresholds were set along the 
X- and Y-axis, respectively. The criteria to select the thresh-
old along the X-axis was the mean of the similarity values of 
all compounds in the set (0.667) (calculated with Tanimoto 
and the ECFP4 fingerprint). The threshold of the activity 
difference (Y-axis) was set to two logarithmic units [33].

The data points in the SAS map were further colored 
by the corresponding Structure–Activity Landscape Index 
(SALI) value [34]. This index, as implemented in Activity 
Landscape Plotter, quantifies AC using the equation pro-
posed by Guha and Van Drie:

where Ai and Aj are the activities of the ith and the jth mol-
ecules, and sim (i, j) is the similarity coefficient between 
the two molecules (in this work computed with the ECFP4 
fingerprint and the Tanimoto coefficient). The SALI val-
ues were mapped onto the SAS maps using a continuous 
color scale from the structurally most similar pairs (green) 
to the least similar pairs (red). For the quantitative analysis 

SALI I, J = ((|Ai − Aj|)∕(1 − sim(i, j)))

Fig. 1  Representative G9a inhibitors. The mimetic lysine substituents are colored green

https://www.difacquim.com/d-tools/
https://www.difacquim.com/d-tools/
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of SAS maps, the structure similarity was also evaluated 
with MACCS keys (166-bits) and PubChem fingerprints as 
implemented in Activity Landscape Plotter [27].

Scaffold content analysis

For the study of scaffolds, we use the methodology imple-
mented by Naveja et. al., generating the scaffolds of each 
compound based on Bemis and Murcko approach. Briefly, 
the method consists of a graph analysis for each compound, 
where a "scaffold" is defined as the union of ring systems 
and linkers in a molecule, and the side chains are removed 
(any non-ring, non-linker atoms). This was done with the 
RDKit Fragments node implemented in KNIME software v. 
3.7.2. The chemical structures of the scaffolds are available 
in Table S1 of the supplementary material [35, 36].

Molecular docking

Protein preparation

The crystallographic structure of human G9a (PDB ID: 
3RJW) was retrieved from the Protein Data Bank (https 
://www.rcsb.org/) [37]. The co-crystallized ligand was 
removed (UNC0638, a 4-aminoquinazoline). Missing loops 
and side-chains were added with YASARA software [38]. 
Finally, hydrogen atoms were added, followed by a minimi-
zation step with the AMBER99 forcefield in MOE software 
(Chemical Computing Group, Montreal, QC, Canada) [39].

Ligand preparation

The ligands were built and energy-minimized in MOE using 
the MMFF94x force field. The more stable protomers at 
physiological pH were identified [40].

Molecular docking

Yasara software was used to add the solvent model and 
assign the Gasteiger atomic charges to proteins and ligands 
[29]. The grid was centered on the binding site of the protein 
(PDB ID: 3RJW). Using the scoring function of AutoDock 
Vina, the binding compounds were subjected to 25 search 
steps and the default values for the other parameters. The 
clusters with an RMSD < 2 Å  were visually explored. During 
the docking simulations the receptor was considered rigid 
and the ligands flexible. The conformations with the lowest 
binding energy and diverse scaffolds were selected for an 
additional MD analysis.

Molecular dynamics

MD studies of the protein–ligand complexes were performed 
using Desmond (version 2018-3, Schrödinger, New York, 
NY, USA) with the OPLS 2005 forcefield [41]. The most 
representative docking pose for each ligand was used as a 
starting point to initiate the MD simulations. The complexes 
were prepared with the System Builder Utility in a buff-
ered orthomobic box (10 × 10 × 10 Å), using the transfer-
able intermolecular potential with 3-point model for water 
(TIP3P). The complexes were neutralized and NaCl was 
added in a 0.15 M concentration.

Complexes were minimized using the steep-descent 
(SD) algorithm followed by the Broyden-Fletcher-Gold-
farb-Shanno (LBFGS) method in three stages. In the first 
stage water heavy atoms were restrained with a force con-
stant of 1000 kcal mol−1 Å−2 for 5000 steps (1000 SD, 4000 
LBFGS) with a convergence criterion of 50 kcal mol−1 Å−2; 
for the second stage, backbones were constrained with a 
10 kcal mol−1 Å−2 force constant using a convergence cri-
terion of 10 kcal mol−1 Å−2 for 2000 steps (1000 SD, 1000 
LBFGS); and for the third stage the systems were minimized 
with no restraints for 1000 steps (750 SD, 250 LBFGS) with 
a convergence criterion of 1 kcal mol−1 Å−2.

Equilibration was carried out in several steps. Beginning 
with Brownian Dynamics for 250 ps with the Berendsen 
thermostat. Followed by simulation on the NVT ensemble, 
slowly heating from 10 to 300 K over 3000 ps. At this stage, 
constraints were enforced on solute heavy atoms, using a 
constant of 50 kcal/mol.

Finally, equilibration on NPT ensemble used the Ber-
endsen thermostat and Langevin barostat for additional 
250 ps. Subsequently, the system was submitted to 130 ns 
of production runs, under NPT ensemble at 1 bar using the 
Martyna-Tuckerman-Klein (MTK) barostat and 300 K using 
the Nose–Hoover thermostat. Electrostatic forces were cal-
culated with the smooth PME method using a 9 Å cut-off, 
while constraints were enforced with the M-SHAKE algo-
rithm. Integration was done every 1.2 fs, with a recording 
interval of 50 ps. Finally, the first 30 ns of production runs 
were removed, this is due to system stabilization after this 
period [22].

The quality of the simulation and trajectory analyses were 
carried out with the tools implemented in the Maestro-GUI 
(Schrödinger, New York, NY, USA) (Fig. S2).

Results and discussion

First, we present and discuss the results of the activity land-
scape analysis that led to the rapid identification of AC and 
other related pairs of active-inactive compounds with dis-
tinct SAR. Then, we discuss a structure-based analysis of 

https://www.rcsb.org/
https://www.rcsb.org/
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selected compounds from the activity landscape analysis 
(focused on the most active compounds of the cliffs in the 
data set). The structure-based analysis was performed with 
docking followed by MD simulations.

SAS map

Figure 2-A shows the SAS map for the 251 G9a inhibi-
tors. The graph contains 31,375 data points, each of which 

represents a pairwise comparison (vide supra). For each 
pair of compound the maps show the relationship between 
the difference in activity and the molecular similarity. As 
detailed in the Materials and methods section, the molecular 
similarity was quantified with the Tanimoto coefficient using 
the ECFP4 fingerprints. The data points are further distin-
guished by the SALI value, using a continuous color scale 
from a low value (green) to a high value (red). As discussed 
in the Materials and methods section, AC will have a high 

Fig. 2  SAS map of 251 com-
pounds with activity against 
G9a (31,375 data points or pair-
wise comparison). a Data points 
are colored by the SALI value 
using a continuous scale from 
low (green) to high (red) values. 
b Data points are colored by 
the maximum activity of the 
compound in each pair (Max.
Activity) value using a continu-
ous scale from low (green) to 
high (red)
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SALI value. In the SAS map in Fig. 2-A most pairs are green 
and yellow, indicating a more continuous SAR i.e., similar 
structures with similar activity. This result can be partially 
explained by the fact that the compounds in the data set 
come from a lead-optimization process [21, 23, 24]. Fig-
ure 2b shows the SAS map colored by “Max.Activity” value, 
i.e., the activity of the most active compound in the pair.

As shown in Fig. 2, a significant proportion of pairs of 
compounds have activity differences larger than two log 
units. This suggests that this set of compounds explores in 
detail the SAR for G9a. However, the AC zone (upper right 
corner) is not so coarse, suggesting that the compounds are 
structurally similar, although we know of the overall scaf-
fold variety in the set of compounds (Fig. 1). In the SH zone 
of the SAS maps (lower left corner) is possible to identify 
compounds with small activity difference, but with different 
scaffolds (low structural similarity), as shown below. We 
want to emphasize that the SAS maps in Fig. 2 were gener-
ated using structural fingerprints (ECFP4, as described in 
the Method section) and the AC rapidly identified in the 
SAS maps may have actually different molecular scaffolds. 

In other words, the fingerprint-based similarity may not be 
highly associated with the scaffold or sub-structure-simi-
larity and it is not a straightforward approach to identify 
molecular matched pairs.

Scaffold content analysis

Figure 3 shows the frequency of Bemis-Murcko scaffolds 
(138 different scaffolds), along with the distribution of their 
biological activity  (pIC50). It is noted that the set of com-
pounds studied has several (more than 10) compounds with 
the same scaffold as 23 m (s17) and WO2017-7 (s62). How-
ever, there are compounds with unique scaffolds in the set 
such as CHEMBL3109631 (s59).

Specific examples of AC and SH identified in the activity 
landscape analysis are labeled in Fig. 2 and 3, respectively. 
The chemical structures are shown in Fig. 4. An AC for G9a 
is the compound pair 23 m/C32, differing in the methoxy 
group at the 6-position and the change of a pyrrole to furan 
substituent at the 2-position of the quinoline ring. Another 
example of a pair of compounds with similar structure 

Fig. 3  Scaffold content analysis of compounds with activity against 
G9a. a Scaffold frequency. The chemical structures of the most fre-
quent scaffolds are shown (frequency of at least 10 compounds). b 

Scaffolds of the most active compounds and activity differences. The 
ID of each compound and the ID of the corresponding scaffold are 
shown for each structure
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(structural changes at the substituent group at 4-position) but 
large activity difference is WO2017-4/WO2017-7 (Fig. 4). 
Examples of compounds associated with SH highlighted 
in Fig. 2a are 23 m, CHEMBL3109631 and WO2017-4 
(Fig. 4a).

Molecular docking

Based on the results of the activity landscape analysis, 
molecular docking was used to generate representative bind-
ing poses with G9a of selected compounds. Docking was 
conducted with Yasara software, as detailed in the Materials 
and methods section.

Figure 5 shows one of the best ranked binding poses of 
representative active and inactive compounds. The com-
pounds were selected because the SAS map identified them 
as the most representative active and inactive compounds 
per scaffold. The docking model suggested that the three 
most active compounds (23 m, CHEMBL3109631, and 
WO2017-4) establish hydrogen-bond contacts with the side 
chains of ASP 1083, and ASP 1088, as well as hydrogen-
bond contacts between the positively charged pyrrolidine 
group of 23 m and WO2017-4 with the backbone of LEU 
1086.

Of note, in the three active compounds in Fig. 5a the 
substituents that mimic lysine (marked in green in Fig. 1) 
make polar and stacking interactions with amino acids such 
as TYR 1067, TYR 1154, ARG 1157, and PHE 1158.

We emphasize that the binding poses of the active and 
inactive compounds are similar, however we consider that 
the flexibility of the mimetic substituents of lysine (in the 
inactive compounds) leads to overfit their binding poses. 
This hypothesis was tested using MD simulations (vide 
infra).

The docking was done with the crystallographic structure 
of G9a PDB ID: 3RJW. Of note, the structure of G9a PDB 
ID: 4NVQ is co-crystallized with the compound A-366, 
which is structurally similar to CHEMBL3109631. Inter-
estingly, Fig. S1 in the Supplementary Material shows the 
results of cross-docking of the co-crystal ligands with the 
two crystallographic structures (PDB ID: 3RJW and 4NVQ, 
respectively). In cross-docking, the binding poses change 
significantly suggesting the relevance of the flexibility of the 
binding pocket. In this work, such flexibility was addressed 
with MD simulations (discussed in the next section). Over-
all, the results of the cross-docking further emphasize the 
importance of MD to perform structure-based interpretation 
of inhibitors of G9a.

Molecular dynamics

Based on the insights from activity landscape modeling 
and docking calculations, we performed MD simulations 
(100 ns) for selected and structurally related active and inac-
tive compounds.

Figure  6 summarizes the interactions between the 
most active compounds (23 m, CHEMBL3109631, and 
WO2017-4) and G9a, according to the MD simulations. 
It is noteworthy the well-conserved interactions with ASP 
1083, ASP 1088 (except CHEMBL3109631), and TYR 
1154. However, interactions with LEU 1086 were replaced 
throughout the dynamics by interactions with the TYR 1154. 
We highlight the interaction of compound 23 m with ASP 
1088, since it is generated through the pyrrole substituent 
in 2-position. Pyrrole substituent is particularly interesting 
given that it is found in the most active compounds of this 
series of compounds (derivatives of 4 amino quinoline).

Fig. 4  Representative G9a inhibitors. a Most active compounds, b inactive compounds



665Journal of Computer-Aided Molecular Design (2020) 34:659–669 

1 3

Of the three compounds analyzed in MD, WO2017-
4 showed more stable direct interactions with G9a dur-
ing the simulation time. In contrast, the interactions of 
CHEMBL3109631 with the binding site are stabilized with 
structural waters. Of note, for the three most active com-
pounds are predicted hydrogen-bond interactions between 
their positively charged scaffolds and ASP 1088. The lysine 
mimetic substituents in the most active compounds make 
interactions with PHE 1158 (Pi-cation interaction dependent 
of pyrrole). Also 23 m and WO2017-4 make interactions 
with LEU 1086 (hydrophobic interaction dependent of ali-
phatic portion), and TYR 1154 (Pi-cation).

Figure 7-A describes the interactions of inactive com-
pounds against G9a (C32 and WO2017-7), based on the 
MD simulations. As compared to the MD simulations of 
the active compounds it is remarkable that the inactive 
compounds do not make key interactions with the lysine-
mimetic substituent: e.g. LEU 1086, TYR 1154, and PHE 
1158 (Fig. 6). As per the interactions with their charged scaf-
folds, at least one of the key interactions observed for active 
compounds was lost (ASP 1083 and ASP 1088, Fig. 6). 
Moreover, as shown in the histograms of Fig. 6 it was also 
observed a decrease in the fraction of interaction with key 
residues during the MD simulations.

Figure 7 suggests non-specificity of interaction with 
respect to the most active compounds. This is further illus-
trated in Fig. S2 in the Supplementary Material, where the 
RMSD and RMSF values (per compound) are plotted, which 
show the conformational stability of G9a and the instability 
of the poses associated with inactive compounds (C32 and 
WO2017-7).

At the structural level, we have identified two possible 
conformational states of pharmacology importance in the 
SET domain of G9a (domain involved in the function of his-
tone methylation) [42]. The first (closed state) that is asso-
ciated with active compounds, and the second (open state) 
that is associated with inactive compounds. The compounds 
favor one or another conformational state as shown in Fig. 
S3A and B (Supplementary Material), respectively. The 
distance between ASP 1088 (carboxyl group carbon in the 
side chain) and ARG 1157 (amino group carbon in the side 
chain) (plotted in Fig. S3C) seems crucial in the formation 
of an open or closed conformational states. Inactive com-
pounds tend to generate an open conformational state (e.g., 
distances > 10 Å), in contrast to active compounds that favor 
the closed state (Fig. S3 and S4) stabilizing the interaction 
between ASP 1088 and ARG 1157 (e.g., distances < 10 Å). 
These results are consistent with the two crystallographic 

Fig. 5  Predicted binding poses of representative compounds. a Most active compounds and b inactive compounds. The interactions by hydrogen 
bonds (pink line) and Pi–Pi interactions (green line) are represented



666 Journal of Computer-Aided Molecular Design (2020) 34:659–669

1 3

states reported for G9a (PDB IDs: 3RJW and 4NVQ respec-
tively). Conformational changes in the SET domain have 
been described for other lysine methyltransferases, using 
computational and experimental methods, breaking the 
paradigm of the existence of a unique conformational state 
associated with methylating action in this type of targets 
[43–45]. Recently, Shin C. et al. demonstrated the existence 
of specific conformational changes in the SET domain asso-
ciated with the type of substrate recognized [46].

Conclusions and perspectives

The concept of epigenetic pharmacology (epi-pharmacol-
ogy) is increasingly relevant [47, 48]. In parallel, activity 
landscape modeling has contributed to the characteriza-
tion of the epigenetic relevant chemical space [49, 50]. 

Therefore, this study that combines activity landscape 
modeling with molecular modeling augmented the SAR 
information for G9a inhibitors. Activity landscape mod-
eling allowed the identification of structurally different 
compounds, but with similar biological activity (scaffold 
hops) against G9a, which will facilitate the generation of 
more robust SAR studies. Based on the activity landscape, 
the set of G9a compounds analyzed in this study are suit-
able for the generation of QSAR models [51]. The results 
of this work further supported the convenience of exploring 
different scaffolds for the molecular recognition of small 
molecules with G9a. The scaffold analysis revealed that the 
new approaches should consider exploring in more detail 
the influence of more and diverse scaffolds on molecular 
recognition. Thus far, three major chemical scaffolds have 
been explored (scaffold IDs S17, S62, and S87), however, 
one of the most promising and least studied scaffolds is s59. 

Fig. 6  G9a–most active compounds contacts analysis during the 
100 ns MD simulations. The plots show the fraction and type of inter-
actions with representative compounds during the simulation. Bind-

ing poses for each compound are shown at the end of the current MD 
simulation. The end-structure of G9a (for each case) is shown
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Docking and MD studies further emphasized the impor-
tance of the interactions between lysine mimetic substituents 
with G9a (LEU 1086, TYR 1154 and PHE 1158). From the 
MD simulations it was concluded that, despite the fact the 

chemical structures of the ligands is different, they main-
tain key interactions with ASP 1083 and ASP 1088. At the 
structural level, hypothetical conformational states (open 
and closed) on SET domain of G9a were identified. These 

Fig. 7  G9a–inactive compounds contacts analysis during the 100 ns 
MD simulations. a The figures show the fraction and type of inter-
actions with representative ligands during the simulation. b Binding 

poses at the beginning (orange) and at the end (cyan) of the MD sim-
ulation. The end-structure of G9a is shown
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conformational states are apparently associated with interac-
tions between the ligands and ASP 1088 and ARG 1157. A 
perspective of this work is conducting 3D-QSAR studies, as 
well as in silico scaffold replacement approaches with the 
long-term goal of identifying novel and alternative chemical 
entities with activity against G9a.
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