149 research outputs found

    Study of failure symptoms of a single-tube MR damper using an FEA-CFD approach

    Get PDF
    From SAGE Publishing via Jisc Publications RouterHistory: epub 2020-11-03Publication status: PublishedA new magnetorheological (MR) damper has been designed, manufactured, modelled and tested under cyclic loads. A faulty behaviour of the damper was accidentally detected during the experiments. It was deduced that the presence of air bubbles within the MR fluid is the main reason for that failure mode of the damper. The AMT-Smartec+ MR fluid used in the current study, a new MR fluid whose characteristics are not available in the literature, exhibits good magnetic properties. However, the fluid has a very high viscosity in the absence of magnetic field. It is assumed that this high viscosity enables the retention of air bubbles in the damper and causes the faulty behaviour. To prove this assumption, a coupled numerical approach has been developed. The approach incorporates a Finite Element Analysis (FEA) of the magnetic circuit and a Computational Fluid Dynamics (CFD) analysis of the fluid flow. A similar approach was presented in a previous publication in which an ideal behaviour of an MR damper (no effect of air bubbles) was investigated. The model has been modified in the current study to include the effect of air bubbles. The results were found to support the assumptions for the reasons of the failure symptoms of the current MR damper. The results are shown in a comparative way between the former and current studies to show the differences in flow parameters, namely: pressure, velocity and viscosity, in the faultless and faulty modes. The results indicate that the presence of air bubbles in MR dampers reduces the damper force considerably. Therefore, the effect of the high yield stress of MR fluids due to the magnetic field is reduced

    Detection of cracks in simply-supported beams by continuous wavelet transform of reconstructed modal data

    Get PDF
    This paper proposes a new approach for damage detection in beam-like structures with small cracks, whose crack ratio [r = Hc/H] is less than 5%, without baseline modal parameters. The approach is based on the difference of the continuous wavelet transforms (CWTs) of two sets of mode shape data which correspond to the left half and the right half of the modal data of a cracked simply-supported beam. The mode shape data of a cracked beam are apparently smooth curves, but actually exhibit local peaks or discontinuities in the region of damage because they include additional response due to the cracks. The modal responses of the damaged simply-supported beams used are computed using the finite element method. The results demonstrate the efficiency of the proposed method for crack detection, and they provide a better crack indicator than the result of the CWT of the original mode shape data. The effects of crack location and sampling interval are examined. The simulated and experimental results show that the proposed method has great potential in crack detection of beam-like structures as it does not require the modal parameter of an uncracked beam as a baseline for crack detection. It can be recommended for real applications
    • …
    corecore