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Theoretical and Finite Element
Modeling of Fine Kirschner Wires
in Ilizarov External Fixator
The mechanical behavior of the transosseous elements is a defining factor in the overall
stiffness, stability, and reliability of an external fixation system. Mechanics involving the
application of thin Kirschner wires in Ilizarov apparatus is yet to be fully explained. To
address this problem, load-deflection behavior of the pretensioned thin wires laterally
loaded by the bone is necessary to be studied. In this paper, the lateral deflections of thin
Kirschner wires are studied both theoretically and computationally. Fully three dimen-
sional finite element (FE) modeling and analyses were performed in which the bone was
modeled as a hollow cylinder, and the wire-bone interaction was assumed to be friction-
less. The mathematical solution resulted in new exact solutions for the deflection as well
as final tension in the wires subjected to the lateral loading under a cylinder representing
the bone. Results from the FE analyses turned out to be very close to those from the
mathematical solution. The results obtained from theory and FE method are comparable
to published experimental findings. Some aspects of the pretensioned thin wire behavior
in ring fixation systems, e.g., stiffness-tension proportionality, were revealed in the re-
sults. The current study adds to the existing knowledge on the general behavior of tensile
elements.
�DOI: 10.1115/1.4001815�

Keywords: Kirschner wire, Ilizarov, pretension, external fixator, finite element method,
geometric nonlinearity, contact analysis
Introduction
Ilizarov appliance is a ring �or circular� external fixation system

y which bone fragments are stabilized using thin Kirschner wires
K-wires�, which pass through the bone and are fixed to an outer
rame of rings and threaded rods �1–4�. It is a modular fixation
ystem, which is assembled around the limb, according to the
pecific clinical application �3,5�, as is illustrated in Fig. 1, and is
idely used for treatment of a variety of skeletal deformities and

ractures in orthopedics, as well as for limb lengthening and re-
onstruction procedures �1–3�. The diameter of the wires does not
xceed 2 mm, hence the name fine or thin wires. Thicker pins are
lso used as transosseous elements in Ilizarov assemblies. For the
ins, bending can be assumed to be the predominant mode of
eformation; thus their mechanical behavior can be described by
he existing solutions provided by the beam theories. For the thin
ires however, the existing solutions based on the classical beam

heory are not applicable. This is due to their slenderness, the
pplication of pretension, and the fact that the tension increases in
hem after the transverse loading �6,7�. One obvious advantage in
tilizing the wires is that their smaller diameter causes minimal
nvasiveness �8�. Their usage is widely believed to have affected
he treatment process positively because they allow interframen-
ary micromotion to occur at the fracture or osteotomy site
4,9–13�. They are also believed to allow conducive stress distri-
ution in metaphyseal treatments �14�. The application of preten-
ion to the wires increases their transverse stiffness considerably,
aking them an alternative to unilateral pins. Pretensioning and

he increase of the tension in the wires due to transverse loading
omplicate the formulation of their load-deflection behavior,
hich is the subject of Sec. 2.
The wire-bone interaction is also an important factor vis-à-vis

he stiffness and stability of the fixator. There are cases in which a
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small stopper is placed on the K-wires; olive wires are examples
of such cases, which are believed to improve stability and overall
fixator stiffness of the fixator �4,5,9�. This stabilizing effect of
application of olive K-wires demonstrates that, in fact, bone tends
to slide along the wires in clinical applications, emphasizing the
significance of bone-wire interaction in overall performance of the
fixator. Nonetheless, in this paper, the wire is assumed to be
smooth, over which the bone is free to slide. Figure 2 illustrates a
simple case of a single K-wire over which is pressed down by a
cylinder �representing the bone�, exerting a load P, on the wire
vertical to the original axis of the wire. In a previous paper �6�, the
part of the wire placed under the bone was ignored in a purely
tensile formulation. In this paper, however, a tensile model in
which the deformation of that part of the K-wire is taken into
account is developed. The rest of this paper is attempted at for-
mulation and simulation of the behavior of K-wires assuming
ideal conditions of linear elastic material behavior, as well as fric-
tionless interaction of wires and the bone. It is necessary to do so
to be able to distinguish the ideal behavior from the effects that
are caused by other factors such as slippage of the wires from
under the fixation bolts �i.e., clamps�, plastic deformation of the
wires due to clamping and twisting of the wire �15–18�, and so on.
It also helps describing the experimental and clinical findings. The
assumption of elastic behavior of the K-wires is supported by
experimental findings �18�.

2 Mathematical Formulation
For simplicity, a symmetrical case of a wire being loaded by a

cylinder, as illustrated in Fig. 2, is considered for solution, and the
wires are modeled mathematically as ideal wires. It means that the
deformation is solely attributed to effect of tension in the wire,
while any deformations due to bending, shear, or torsion are ig-
nored, hence the name tensile �or wire� model. This means that
nonetheless, here the wire is not considered as a chain of separate

wire segments of fixed undeformed lengths, but it is being treated
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s a single wire of a given total undeformed length, which is
ivided into �three� wire segments due to its deformation. The
xial force applied to a wire prior to its fixation on the ring �by the
xation bolts as seen in Fig. 2� is called pretension and is repre-

Fig. 1 Ilizarov ring fixator applied to tibia

ig. 2 Transverse deflection of a K-wire passing through a cyl-
nder and fixed to an Ilizarov full-ring, where cylinder can slide
reely over the wire and the wire assumed to be deformed

olely due to tension „i.e., no bending in the wire…
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sented by F. The load applied upon the wire by the bone segment
�cylinder� vertical to its original axis is referred to as lateral or
transverse load and is denoted by P.

Each of these forces induces different elongations in each wire
segment; therefore, care should to be taken to distinguish between
the respective lengths of each wire segment before and after the
application of each of these loads. Here the terms unstressed, un-
deformed, and untensioned are used interchangeably, meaning the
length of the wire or wire segment prior to any loading, other
terms such as tension-free or stress-free can also be used. The
outer radius of the bone at the point of insertion of the wire is
called r, and the length of the wire segment, which is stretched

due to pretension to cover r, is called r0 �i.e., r0→
F

r�. Thus r−r0 is
the elongation induced in the wire segment of the length r0, due to
the pretension force F. The bone-clamp distance is denoted by L0,
which is the length of the wire segment connecting bone to clamp
after pretension, as seen in Fig. 3�a�, while the untensioned length
of the wire segment, which is stretched due to pretensioning force,

F, to cover the bone-clamp distance is named L−2 �i.e., L−2→
F

L0�.
Thus the total unstressed length of the wire prior to pretensioning
is L−2+r0 �of half of total wire span between the clamps as seen in
Fig. 3�a��.

As the load P is applied, the tension is increased to the final
tension T in the wire in the bone-clamp wire segment. The tension
in the wire segment inside the bone is also raised to a new value
called Tr. The length of wire segment, which is stretched due to its

final tension �Tr� to cover r, is called r−1 �i.e., r−1→
Tr

r�, and the
untensioned length of the wire segment, which is stretched due to
the final tension �T� to connect bone to clamp, is called L−1 �i.e.,

L−1→
T

L�. This means that L−1+r−1 also constitutes the total un-
stressed length �for half of the whole wire span connecting the
two clamps�. The length of the wire segment connecting bone to
clamp after both pretensioning and lateral loading, as seen in Fig.
3�b�, is called L. Static equilibrium of forces in Fig. 3�b� for the
horizontal direction gives

Tr = T cos � �1�

Fig. 3 Free-body diagram of the K-wire showing the forces
acting on half of the wire: „a… after pretensioning and prior to
lateral loading and „b… after application of both pretension and
lateral load
and for the vertical direction it gives
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T sin � =
P

2
�2�

ssuming linear elasticity for the material behavior, the defini-
ions of r−1, r0, r, L−2, L−1, L0, F, T, and Tr as mentioned above
ive

r − r−1 =
Trr−1

EA
�3�

r − r0 =
Fr0

EA
�4�

L0 − L−2 =
FL−2

EA
�5�

nd finally

L − L−1 =
TL−1

EA
�6�

eometry in Fig. 2 gives

L0 = L cos � �7�

s was said above, the total unstressed length of half of the wire
s given by L−2+r0 and also by L−1+r−1, which are the unstressed
engths before pretensioning and before application of both pre-
ension and lateral load, respectively. Thus

L−1 + r−1 = L−2 + r0 �8�

ow there are eight unknowns �namely, L−2, L−1, L, r−1, r0, Tr, T,
nd �� and eight equations, which are Eqs. �1�–�8�. Now attempt
hould be made to solve the equations above simultaneously to
btain a single explicit equation for maximum deflection, namely,
. Equation �3� gives

r−1 = � EA

EA + Tr
�r �9�

imilarly, Eq. �4� gives

r0 = � EA

EA + F
�r �10�

quation �5� gives

L0 = �EA + F

EA
�L−2 �11�

inally, Eq. �6� gives

L−1 = � EA

EA + T
�L �12�

quations �9� and �10� give

r−1 − r0 = EA� 1

EA + Tr
−

1

EA + F
�r �13�

ubstituting L−2 from Eq. �8� into Eq. �11� gives

�EA + F

EA
��L−1 + r−1 − r0� = L0 �14�

ubstituting r−1−r0 from Eq. �13� into Eq. �14� gives

EA + F

EA
L−1 −

Tr − F

EA + Tr
r = L0 �15�

ubstituting L−1 from Eq. �12� into Eq. �15� gives

EA + F

EA + T
L −

Tr − F

EA + Tr
r = L0 �16�
ubstituting Tr from Eq. �1� into Eq. �16� gives
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EA + F

EA + T
L −

T cos � − F

EA + T cos �
r = L0 �17�

Substituting L from Eq. �7� into Eq. �17�� gives

�EA + F

EA + T
�� L0

cos �
� +

F − T cos �

T cos � + EA
r = L0 �18�

Dividing both sides of the Eq. �18� by L0 and referring to r /L0 as
j give

�EA + F

EA + T
�� 1

cos �
� +

�F − T cos ��
T cos � + EA

j = 1 �19�

Equation �19� can be rearranged as

EA�EA + F� + EA�Fj − EA�cos � + T�1 + j�cos ��F − EA cos ��

− T2�1 + j�cos2 � = 0 �20�

Substituting T from Eq. �2� into Eq. �20� gives

EA�EA + F� + EA�Fj − EA�cos � + � P

2 sin �
�F�1 + j�cos �

− � P

2 sin �
�EA�1 + j�cos2 � − � P

2 sin �
�2

�1 + j�cos2 � = 0

�21�
From geometry in Fig. 2, it can be seen that

cot � = cos �/sin � = L0/y �22�
Substituting Eq. �22� into Eq. �21� gives

EA�EA + F� + EA�Fj − EA�cos � + �P

2
�F�1 + j��L0

y
�

− �P

2
�EA�1 + j��L0

y
�cos � − �P

2
�2

�1 + j��L0

y
�2

= 0

�23�
Equation �22� gives

cos � =
L0

�L0
2 + y2

�24�

Substituting cos � from Eq. �24� into Eq. �23�, and rearranging
and raising to the second power to eliminate the radical give a
sixth degree equation for y, which is

a6y6 + a5y5 + a4y4 + a3y3 + a2y2 + a1y + a0 = 0

the coefficients of which are

a6 = − �4EA�EA + F��2

a5 = − 16EAPF�1 + j��EA + F�L0

a4 = ��4EA�2�Fj − EA�2 − �4EA�EA + F��2 − �2P�1 + j�F�2

+ 8EA�EA + F�P2�1 + j�	L0
2

a3 = �− �4EA�2�Fj − EA��1 + j�P − 16EA�1 + j��EA + F�PF

+ 4P3F�1 + j�2	L0
3

a2 = ��2EAP�2�1 + j�2 − �2P�1 + j�F�2 − P4�1 + j�2 + 8EA�EA

+ F�P2�1 + j�	L0
4

a1 = 4P3F�1 + j�2L0
5

a0 = P4�1 + j�2L0
6 �25�

Here, as in the case of the nonsliding tensile model �6�, a separate
equation can be derived for calculation of the final tension, T, and

the angle of deflection, �. Equation �2� gives
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�4T2 − P2

2T
= cos � �26�

ubstituting cos � from Eq. �26� into Eq. �20� gives the equation
or T as

b6T6 + b5T5 + b4T4 + b3T3 + b2T2 + b1T + b0 = 0

he coefficients of which are

b0 = − 4�EA�2P2�Fj − EA�2 − �EA�2�1 + j�2P4

b1 = − 8EAFP2�1 + j��Fj − EA� − 8�1 + j��EA�2P2�EA + F�

+ 2EA�1 + j�2P4

b2 = 16�EA�2�Fj − EA�2 − 4�1 + j�2F2P2 − 8�1 + j��EA�P2�EA

+ F� + 8P2�EA�2�1 + j�2 − �1 + j�2P4 − 16�EA�2�EA + F�2

b3 = 32EAF�Fj − EA��1 + j� + 32�1 + j��EA�2�EA + F�

+ 16EA�1 + j�2P2

b4 = 16�1 + j�2F2 + 32�1 + j�EA�EA + F� − 16�EA�2�1 + j�2

+ 8�1 + j�2P2

b5 = − 32EA�1 + j�2

b6 = − 16�1 + j�2 �27�
quation �21� can be rearranged to give the equation to yield an
xplicit for direct calculation of �. Alternatively the solution for
eflection �y� from Eq. �25� can be substituted into Eq. �22�
namely, �=tan−1�y /L0��, to give �. Also, once Eq. �27� is solved,
q. �26� can be rewritten as �=cos−1��4T2− P2 /2T� to readily
ield �.

Finite Element Simulation of Frictionless Suspen-
ion of a Bone Fragment on Pretensioned K-Wires

Modeling of suspension of the bone segment �as hollow cylin-
ers�, the bone on the wires is also unprecedented by finite ele-
ent analysis �FEA� or otherwise. The free-sliding tensile formu-

ation presented in Sec. 2 can model the actual clinical situation
or K-wires used in Ilizarov appliance. Three finite element mod-
ls were made and analyzed for the configurations shown in Fig.
–7. Nonlinearity of the behavior of thin wires in Ilizarov appli-
nce is well established �4,6–9,16,17,19,20�; thus FE analyses
ere performed nonlinearly by ABAQUS/STANDARD to check the

esults obtained from Eq. �25�.
K-wires were modeled as identical thin solid cylinders �d

1.8 mm and L=180 mm�. The bone segment was modeled as
olid hollow cylinder �the internal diameter was 10 mm and the
utside diameter was 15 mm�. Material properties were defined in
erms of Young’s modulus and Poisson’s ratio; classic values of
ss=200 GPa and �ss=0.3 for stainless steel were applied to the
ires, and Ebone=22 GPa and �bone=0.35 were used for the hol-

ow cylinder representing the bone �8,21�. K-wires passed through
he holes of the same diameter in the bone at 90/90 deg as well as
5/135 deg angle to each other. To simulate the assumption that
one can slide freely along the wire, all interactions between the
ires and the holes in the bone through which wires were passed
ere defined tangentially as frictionless and normally as hard con-

act. Analyses were performed in the absence of any pretension, as
ell as under all four clinically applied pretensions. The analyses
ere carried out in two steps.
First, the pretension was applied to one end of each K-wire,

hile the other end was fully constrained. No other boundary
ondition was applied to the model at this step, and also no inter-

ction was defined in the model in this step. Bone-wire assembly

31001-4 / Vol. 4, SEPTEMBER 2010
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at the end of this step for a pretension of F=490 N is illustrated
in Fig. 4, which also shows the stress levels in the model.

In the second, i.e., axial loading of the bone-wire assembly,
which means transverse loading of the K-wires, both ends of the
K-wires were fully restrained. The load representing the weight of
the patient was uniformly applied at the upper end of the cylinder
to simulate the axial compression. No boundary condition was
applied to the cylinder, and the interaction was defined between
the surfaces of K-wires and the cylinder surfaces in contact with
the K-wires, which was frictionless tangentially and hard nor-
mally. Figure 5 shows the results for stress levels in an assembly
with two K-wires with perpendicular axes after both pretensioning
and transverse loading of the wires, where F=490 N and P
=200 N per wire. Figure 6 demonstrates the stress contours of a
cylinder-wire assembly with two pairs of perpendicular K-wire at
90 deg, while Fig. 7 shows the similar results for an analysis were
K-wires were at 45 deg. In assemblies in Figs. 6 and 7, parts other
than the cylinder and K-wires are shown, which are display parts
and were not included in the analyses. Due to the small diameter
of the wires, they should be watched carefully for stress concen-
tration locations. Figure 5 also shows that for the regions in the
wire at the immediate vicinity of the clamps or the point of inser-
tion of wire into the bone, the local stresses exceed the yield point
of the stainless steel, which is reported to be 520 MPa �21�. There-
fore, it can be assumed that plastic deformation is certain to take

Fig. 4 Pretensioning step for FEA of the wire-bone interaction
„F=490 N, unit of stress is Pa…

Fig. 5 Application of a transverse load of P=400 N on preten-
sioned wires „F=490 N, unit of stress is Pa… by applying
equivalent pressure to the upper surface of the cylinder „free

bone-wire sliding was allowed…
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lace at those regions. The occurrence of these local yieldings is
elieved to reinforce the basis of application of a purely elastic
ensile model to the wires’ behavior, which is applied in the cur-
ent paper �6,7,19�.

Results and Discussions
The results for deflection versus load from Eq. �25� are plotted

n Fig. 8�a� for loads of up to 50 N, at different pretensions as well
s in the absence of pretensioning. It shows that if the load is kept
ithin that range, for pretensions of more than 90 kgf �883 N� the

oad-deflection behavior is linear. Figure 8�b�, when compared
ith Fig. 8�a�, shows that as the applied load grows so does the
onlinearity in the K-wire behavior. Figures 8�a� and 8�b� also
how that the nonlinearity decreases as the pretension increases.
n Fig. 9, the results for deflection versus load from Eq. �25� as
ell as the results from no-sliding model �7� are plotted, which

hows that the free-sliding model �Eq. �25�� gives higher deflec-
ions for the same given parameters. This quantifies the effect of
ree sliding of bone on the K-wires. Results for stiffness were
btained implicitly from Eq. �25�, as tangent modulus, i.e., K
Kt=�P /�y, which are plotted in Fig. 10 and proved to be less

han those obtained from tensile no-sliding model as given in Ref.
6�.

Results for deflections �along the bone axis� from FE analyses
or K-wires at 90/90 deg as well as at 45/135 deg are plotted in

ig. 7 Stress contours for frictionless suspension of the bone
i.e., cylinder… on four K-wires at 45 deg „F=490 N, P=300 N,
nit of stress is Pa….

ig. 6 Stress levels for frictionless suspending of the bone „as
cylinder… on four K-wires at 90 deg „F=883 N, P=300 N, unit
f stress is Pa…
ig. 11, which show excellent agreement �almost identical� be-

ournal of Medical Devices
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tween the two set of results for all the clinically applied preten-
sions, as well as in the absence of pretensioning. This shows that
the K-wire behavior is not dependent on the angle between them,
even in the case of free sliding of the bone on the K-wires, which
means that the reports of effect of wire angles on the load-
deflection behavior of the fixator �in axial compression� �9� must
be due to the ring deformation. This requires further investigation
on the behavior of the rings in all circular �ring� fixators. Figure
11 also shows that the nonlinearity is increased as the pretension
decreases, which confirms the trend observed in the results from
analytical solution plotted in Fig. 8.

Fig. 8 Load versus deflection curves for a K-wire under differ-
ent pretensions „tensile free-sliding model…, for „a… a small
range and „b… an extended range of transverse loads

Fig. 9 Comparison of load versus deflection curves for a wire
under a given pretension with different wire spans modeled by

the two tensile models

SEPTEMBER 2010, Vol. 4 / 031001-5
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Figures 12–15 offer comparisons between the results for deflec-
ion versus load at different pretensions from Eq. �25� and those
rom FE analyses. They show good agreement between the two
ets of results, which confirms the applicability of the analytical
olution. The effect, which can be called the linearizing effect of

ig. 10 Load versus stiffness curves for a wire under a given
retension for different wire spans „tensile free-sliding model…,
here stiffness is defined as tangent modulus „i.e., K=Kt
�P /�y…

ig. 11 Load versus deflection curves from FE analysis of two
ifferent configurations for K-wires angles „90 deg and 45 deg,
s seen in Figs. 6 and 7, respectively…

ig. 12 Results for load versus deflection from FEA for a pair
f K-wires subjected to lateral compression by the bone „see
ig. 5…, compared with analytical solution from Eq. „25…, in the

bsence of friction and pretension

31001-6 / Vol. 4, SEPTEMBER 2010
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Fig. 13 Results for load versus deflection from FEA for a pair
of K-wires subjected to frictionless lateral compression by the
bone „see Fig. 5…, compared with analytical solution from Eq.
„25…, at a relatively low clinical pretension „F=490 N…
Fig. 14 Results for load versus deflection from FEA for a pair
of wires subjected to frictionless lateral compression by the
bone „see Fig. 5…, compared with analytical solution from Eq.
„25…, at medium range clinical pretensions: „a… F=883 N and „b…

F=1079 N
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retension, has been also observed when comparing these figures.
s the material was assumed to obey Hooke’s law, the nonlinear-

ty observed in the results from both the theoretical and FE analy-
es, which are plotted in Figs. 8–15, ought to be geometric. The
roots” command in the MATLAB software has been used to solve
qs. �25� and �27�. Results from Eq. �27� for final tension in the
ire are plotted in Fig. 16 at different clinical pretension.
Tension in the K-wires as predicted by Eq. �25� for a relatively

mall ring diameter �D=140 mm�, as well as for a larger ring
D=220 mm�, are plotted in Fig. 17, for both low and high pre-
ension levels. It shows the small effect that the length can have
n the final tension in a K-wire, which is even smaller at the high
retension of 1275 N. It also could be explained by Eq. �27�,
hich contains no explicit term of length of wire �e.g., L−2, L−1,

nd L�. Nevertheless, Eq. �27� does include terms involving j,
hich means that the ratio of the bone diameter to the wire length

i.e., ring diameter� can affect the ultimate �final� tension devel-
ped in the wire due to the application of lateral load �P�. Results
or angle of deflection �� in Fig. 2�, for a small ring diameter, is
lotted in Fig. 18�a� for a high and a relatively low pretension.
he same graphs for a large ring are plotted in Fig. 18�b�. Both of

ig. 15 Results for load versus deflection from FEA for a pair
f wires subjected to transverse compression by the bone „see
ig. 5…, compared with analytical solution from Eq. „25…. At a
igh clinical pretension „F=1275 N…, the bone-wire interaction
ssumed to be frictionless.

ig. 16 Final tension in a K-wire subjected to frictionless
ransverse „lateral… compression by a cylinder, as predicted by
nalytical solution in Eq. „27…, at different clinically applied

retensions
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these figures show that the effect of the ring size on the angle of
deflection is small, which decreases as the pretension increases.

Comparing Eq. �25� and Eq. �27� with the equations for maxi-
mum deflection and final tension in the wires in Ref. �7�, respec-
tively, shows how the solutions have grown in complexity by
introducing the effect of sliding between bone and wires. Not only
the coefficients have more terms but also the degree of the equa-
tion is raised from 4 to 6. The fact that polynomials of up to fourth
degree can be solved using radicals �root extractions� implies that
the same solution technique is also rendered inapplicable. None-
theless, Eqs. �25� and �27� can be solved numerically, which of
course is easily carried out by a variety of methods or simply by a
single command in a number of technical computing software
packages �e.g., roots ��…�� in MATLAB�. It should also be men-
tioned that although generally there are a set of six roots for a
sixth degree polynomial equation, in the case of Eqs. �25� and
�27�, it was easy to distinguish the sole acceptable solution from
other unacceptable roots, all of which were either complex, nega-
tive, or abnormally large or small values. They offer improve-
ments to the equations in Ref. �7�. The equations for deflection
and final tension in the wire presented in Ref. �7� merely consti-
tute special cases of Eqs. �25� and �27� in which r= j=0.

In Fig. 19, curves for stiffness versus tension in the wire are
plotted, which are a set of parallel straight lines. It shows that
stiffness defined as tangent modulus is linearly dependent on the
tension in the wire. This stiffness-tension proportionality under-
lines the significance of the pretensioning, without which the wire
would lack any initial stiffness. Figures 8�a� and 8�b� can be com-
pared with the graphs from experimental data presented in Refs.

Fig. 17 Effect of length on the final tension in the K-wires sub-
jected to frictionless lateral compression by a cylinder, as pre-
dicted by analytical solution in Eq. „27…, at „a… a low clinical
pretension and „b… a high pretension
�16,4�, respectively. To make the comparison clearer, Fig. 20 was
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roduced in which the graph produced from Eq. �25� is shown
longside the graphs from experimental data, and the FE analysis
ublished by Watson et al. �16�. It shows that the results obtained
rom Eq. �25� agree to the published experimental data.

Conclusions
Taking into account the wire segment that is placed inside the

one increased the lateral deflection of the wire and thus reduced
he stiffness. The results from the obtained polynomial equation
howed good agreement with the results yielded by the FE analy-
es. However, this should not be construed as validation of either
ethod against the other. Having a single polynomial equation for

he nonlinear deflection of the wire simplifies the solution relative
o the FE method, which needs to be solved nonlinearly. In this
ork, wires were modeled using solid elements in contrast to the
eam elements, for the model to be able to accommodate the
one-wire slippage in the model, which was carried out via defin-
ng contact between bone and wire. Beam elements have been
reviously used for modeling the wires in circular fixators �8–21�,
here they are transfixed through the bone segment, which means

hat the interaction was not defined at the bone-wire interface to
llow the reported wire-bone slippage �or sliding� �4,5,9�. The

ig. 18 Effect of length on the angle of deflection of the
-wires subjected to frictionless lateral compression by a cyl-

nder, as predicted by analytical solution in Eq. „25…, at „a… a low
linical pretension and „b… a high pretension
esults from theoretical solution showed that length of the wire
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has only a small effect on the tension developed in the wire due to
transverse loading and also on the angle by which the wire is
deflected. They also demonstrated that the stiffness of a wire is
proportional to its tension. As expected, changing the wire orien-
tation from 90/90 deg to 45/135 deg did not change the results
yielded by the FE analyses. It implies that the reported change in
the stiffness of fixator for different wire angles �9� must be from
deformation of the rings or other factors. As shown in Fig. 1, the
rings are supported by interconnecting rods, which connect the
rings and can be assumed to be strong enough to allow their
deformation to be ignored in the analysis of the fixator assembly.
Nonetheless, the rings will deform as curved beams loaded by the
wires �see Fig. 2�, with boundary condition applied where the
interconnecting rods are placed on the ring. Magnitude of the load
applied to the ring is obviously the same as the tension in the wire
�and of course in opposite direction�, which is predicted by Eq.
�27� and illustrated in Figs. 16 and 17. They show that tension is
relatively high and thus is capable of inducing deflections in the
ring between two adjacent interconnecting rods, which can affect
the overall stiffness of the fixator.

In the end, it should be emphasized that the scope of this paper
is limited to the behavior of the slender Kirschner wires as used as

Fig. 19 K-wire stiffness defined as tangent modulus versus
tension in the wire under different pretensions and transverse
loads from 0 N to 500 N for a 180 mm diameter ring

Fig. 20 A comparison of Load versus deflection curves for a
K-wire under different pretensions „in a small range of applied
lateral loads… obtained from Eq. „25…, and experimental data

published by Watson et al. †16‡
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a part” of circular external fixators. Here, including the bone in
he model was solely aimed at accommodating bone-wire interac-
ion in the FE analysis. The need for a comprehensive modeling of
he entire geometry of the bone-fixator assembly, e.g., via FE
echnique, still persists. Such a model should be geometrically

ore accurate and account for interaction between different com-
onents, allowing more complicated loadings, i.e., tension/
ompression, torsion, bending, or combinations of them, to be
imulated. In this paper, the interaction between the bone and the
ires were modeled as frictionless, which as mentioned above
nly reflects an ideal behavior and will necessitate further simu-
ations to be carried out with, perhaps, different friction coeffi-
ients. Material properties of the bone is another issue to be ad-
ressed in further FE studies, such as bone creep behavior as a
esult of it being loaded dynamically over relatively long periods
f time.

otations and Nomenclature
� � angle of deflection of the wire, see Fig. 2
� � Poisson’s ratio
A � cross sectional area of the K-wire �or beam�

a0 ,a1 , . . . ,a6 � coefficients in Eq. �25�
b0 ,b1 , . . . ,b6 � coefficients in Eq. �27�

D � internal diameter of the ring �in circular
fixators�

d � diameter of K-wire �or beam�
E � Young’s modulus of elasticity of the material
F � pretension �pretensile force� applied longitudi-

nally to K-wire or beam
j � ratio of outer radius of the bone at the point of

insertion of the K-wire, to the bone-clamp dis-
tance �j=r /L0�

K � transverse stiffness of the wire �here K=Kt
=�P /�y�

L � length of the wire segment connecting bone to
clamp after both pretensioning and lateral load-
ing, see Fig. 3�b�

L0 � bone-clamp distance �i.e., length of the wire
segment connecting bone to clamp after
pretension�

L−1 � untensioned length of the wire segment which
is stretched due to its final tension �i.e., T� to

cover the bone clamp distance �i.e., L−1→
T

L�
L−2 � untensioned length of the wire segment which

is stretched due to pretensioning to cover the

bone-clamp distance �i.e., L−2→
F

L0�
P � load applied transversely to the K-wire
r � outer radius of the bone �or the cylinder� at the

point of wire insertion, see Fig. 2
r0 � half the untensioned length of the wire seg-

ment which is stretched due to pretension to
cover the �outer� diameter of the bone �i.e.,

r0→
F

r�
r−1 � half the untensioned length of the wire seg-

ment which is stretched due to its final tension
ournal of Medical Devices
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�i.e., Tr� to cover the diameter of the bone �r−1

→
Tr

r�
T � final tension in the K-wire or beam �after both

pretensioning and transverse loading� in the
bone-clamp segment

Tr � final tension in the wire segment under the
bone

y � maximum transverse deflection of the wire �see
Fig. 2�
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