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Abstract 

This paper proposes a new approach for damage detection in beam-like structures with 

small cracks, whose crack ratio ( HHr c / ) is less than 5%, without baseline modal 

parameters. The approach is based on the difference of the Continuous Wavelet 

Transforms (CWTs) of two sets of mode shape data which correspond to the left half 

and the right half of the modal data of a cracked simply supported beam. The mode 

shape data of a cracked beam, are apparently smooth curves, but actually exhibit local 

peaks or discontinuities in the region of damage because they include additional 

response due to the cracks. The modal responses of the damaged simply-supported 

beams used are computed using the finite element method. The results demonstrate the 

efficiency of the proposed method for crack detection, and they provide a better crack 

indicator than the result of the CWT of the original mode shape data. The effects of 
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crack location and sampling interval are examined. The simulated and experimental 

results show that the proposed method has great potential in crack detection of 

beam-like structures as it does not require the modal parameter of an uncracked beam as 

a baseline for crack detection. It can be recommended for real applications. 

Keywords   
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1. Introduction 

The interest in the ability to monitor a structure and detect damage at the earliest 

possible stage is pervasive throughout the civil, mechanical and aerospace engineering 

communities. During the past two decades, a variety of analytical, numerical and 

experimental investigations have been carried out on cracked structures with a view to 

developing robust crack detection methods. Any crack or localized damage in a 

structure reduces the stiffness and increases the damping in the structure. Reduction in 

stiffness is associated with decreases in the natural frequencies and modification of the 

mode shape of the structure. Several researchers have used mode shape measurements 

to detect damage. Pandey et al. [1] showed that absolute changes in the curvature mode 

shapes are localized in the region of damage and hence can be used to detect damage in 

a structure. The change in the curvature mode shapes increase with increasing size of 

damage. This information can be used to obtain the amount of damage in the structure. 

Ratcliffe [2] found that the mode shapes associated with higher natural frequencies can 

be used to verify the location of damage, but they are not as sensitive as the lower 

modes. Modal curvatures seem to be locally much more sensitive to damage than modal 
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displacements. In fact, the authors of this paper have shown that higher derivatives give 

a more sensitive detection [3]. Abdel Wahab and De Roeck [4] investigated the 

application of the change in modal curvatures to detect damage in a pre-stressed 

concrete bridge. They introduced a damage indicator called ’curvature damage factor’. 

A crack in a structure introduces a local flexibility that can change the dynamic 

behaviour of the structure. Some damage index methods require the baseline data set of 

the intact structure for comparison to inspect the change in modal parameters due to 

damage. Typically, the baseline is obtained from measurements of the undamaged 

structure, As an example, Pandey et al. [1] compared the curvatures of the modes shapes 

between the undamaged and damaged structures. Sampaio et al. [5] directly subtracted 

the values of the mode shape curvature of the damaged structure from that of the 

undamaged structure.  

In recent years, the use of wavelet analysis in damage detection has become an area of 

research activity in structural and machine health monitoring. The main advantage 

gained by using wavelets is the ability to perform local analysis of a signal which is 

capable of revealing some hidden aspects of the data that other signal analysis 

techniques fail to detect. This property is particularly important for damage detection 

applications. A review is provided by Peng and Chu [6] of available wavelet 

transformation methods and their application to machine condition monitoring. Deng 

and Wang [7] applied directly discrete wavelet transform to structural response signals 

to locate a crack along the length of a beam. Tian et al. [8] provided a method of crack 

detection in beams by wavelet analysis of transient flexural wave. Wang and Deng [9] 

discussed a structural damage detection technique based on wavelet analysis of spatially 
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distributed response measurements. The premise of the technique is that damage in a 

structure will cause structural response perturbations at damage sites. Such local 

perturbations, although they may not be apparent from the measured total response data, 

are often discernible from component wavelets. Liew and Wang [10] found that the 

presence of cracks can be detected by the change of some wavelet coefficients along the 

length of a structural component.  

Gentile and Messina [11] were focused on the detection of open cracks in beam 

structures that undergo transverse vibrations. They used continuous wavelet transform 

to detect the location of open cracks in damaged beams by minimizing measurement 

data and baseline information of the structure. Quek et al. [12] examined the sensitivity 

of the wavelet technique in the detection of cracks in beam structure. Specially, the 

effects of different crack characteristics, boundary conditions, and wavelet functions 

used were investigated. Hong et al. [13] presented the effectiveness of the wavelet 

transform by means of its capability to estimate the Lipschitz exponent, whose 

magnitude can be used as a useful indicator of the damage extent. Damaged beams were 

investigated both numerically and experimentally. Yan et al. [14] evaluated the ability 

of detecting crack damage in a honeycomb sandwich plate by using natural frequency 

and dynamic response. They found energy spectrum of wavelet transform signals of 

structural dynamic response has higher sensitivity to crack damage. Douka et al. [15] 

used wavelet analysis for crack identification in beam structures. The fundamental 

vibration mode of a cracked cantilevered beam was analyzed using wavelet analysis and 

both the location and size of the crack are estimated.  

Han et al. [16] proposed a damage detection index, which is called wavelet packet 
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energy rate index, for the damage detection of beam structures. The simulated and 

experimental studies demonstrated that the wavelet packet transform based energy rate 

index is a good candidate index that is sensitive to structural local damage. Chang and 

Chen [17] presented a technique for structure damage detection based on spatial wavelet 

analysis. Using the technique, the positions and depths of the cracks can be predicted 

with acceptable precision even though there are many cracks in the beam. Zumpano and 

Meo [18] presented a novel damage detection technique, tailored at the identification of 

structural surface damage on rail structures. The damage detection methodology 

developed was divided into three steps. The presence of the damage on the structure 

was assessed. In the second step, the arrival time of the reflected wave (or echo) was 

estimated using Continuous Wavelet Transform (CWT). Then, the detection algorithm 

was able, through a ray-tracing algorithm, to estimate the location of damage. Kim et al. 

[19] proposed a vibration-based damage evaluation method that can detect, locate, and 

size damage using multi-resolution wavelet analysis. Zhu and Law [20] presented a new 

method for crack identification of bridge beam structures under a moving load based on 

wavelet analysis. The proposed method is validated by both simulation and experiment. 

Locations of multiple damages can be located accurately, and the results are not 

sensitive to measurement noise, speed and magnitude of moving load, measuring 

location, etc. 

This paper is aimed at detecting and locating cracks in damaged beams with small 

cracks, whose crack ratio is less than 5%. As stated in the previous paragraph, the 

minimum value of crack ratios using existing methods of crack detection is 5%. Even 

then, the existing methods only provide clear crack detection at crack ratio of 20% or 

greater. The aim of the present work is to develop a baseline-free method that will give 
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clear crack identification at crack ratios as small as 5% and even smaller. This new 

approach is based on finding the difference of the CWTs of the two sets of mode shape 

data. Those two modal data sets, which constitute two new signal series, are obtained 

and reconstructed from the modal displacement data of a cracked simply-supported 

beam. They represent the left half and the modified right half of the modal data of the 

simply supported beam. The left half of the modal data is the left half segment of the 

original mode shape data. For a symmetric mode shape, the modified right half modal 

data is obtained from rotating the right half segment of the mode shape about the 

vertical axis which passes through the centre of the mode shape, that is the vertical 

centre of the beam. For an antisymmetric mode shape, the modified right half segment 

is produced by rotating the right half of the mode shape twice: firstly about the vertical 

axis and secondly about the horizontal axis which pass through the centre of the mode 

shape.  

CWT algorithm is firstly introduced in this paper. Then, a numerical example is 

provided to illustrate the operation of the method. This partly involves the computations 

of the first few natural frequencies and mode shapes of cracked simply supported beams 

using the ABAQUS finite element code. For brevity, only CWT of the first four mode 

shapes is investigated. The original mode shape data or ‘signal’ is divided and 

reconstructed into two signal series; one is the first half of the original mode shape 

‘signal’, the other is a modified signal obtained from the second half of the original 

mode shape ‘signal’. To further verify the efficiency and practicability of the proposed 

method, the effects of crack location, mode shape data sampling interval are 

investigated. The simulated and experimental results show that the proposed method has 

great potential in the field of crack detection of beam-like structures and can be 
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recommended for real applications. 

2. Continuous wavelet transform 

This section presents a brief background on continuous wavelet transform utilized in 

this paper. More facts on continuous wavelet transform can be found in the study of  

Daubechies [21].  

A mother wavelet )(x  can be defined as a function with zero average value,  
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where both s  and b  are real numbers, and s must be positive. 
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where (*) denotes the complex conjugate, the mother wavelet should satisfy an 

admissibility condition to ensure existence of the inverse wavelet transform, such as 

 








 d
F

C

2

)(
                          (5) 

where )(F  denotes the Fourier transform of )(x defined as 
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Also, the CWT may as well be performed in Fourier space [22] 
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where )(fF  is the Fourier transform of )(xf defined as 
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The local resolution of the CWT in time or space and in frequency depends on the 

dilation parameter s  and is determined, respectively, by the duration x  and 

bandwidth   of the mother wavelet [23] :  



9 

s
xsx








 ,                         (10) 

Here, x  and   are defined as 

dxxxx
x

x 



 22

2

)()(
)(

1 
                (11) 




 


 dF
F







22

2

)()(
)(

1
          (12) 

where x  and   are the centre of )(x  and )(F , respectively, 
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2
  denotes the classical norm in the space of square integrable functions. 

It is well known that the number of vanishing moments is one of the most important 

factors for the success of wavelets in various applications [24]. In the present work, a 

symlet wavelet ‘symmetrical 4’ having four vanishing moments has been selected and 

used as the analyzing wavelet. The scaling function and wavelet function of 

‘symmetrical 4’ wavelet are shown in Fig.1 (a) and (b).  

3. Continuous wavelet transform of reconstructed mode shape data 

The aim of the proposed method is to magnify small crack effects to make the crack 
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detectable when the cracks are in the early state. This method uses the difference of the 

CWTs of two reconstructed sets of data or signal series obtained from the original mode 

shape of a cracked beam. Firstly, the original mode shape signal is divided and 

reconstructed into two signal series as follows. If the original mode shape ‘signal’ is 

made up of Nddd ,...,, 21  data points, where N  is the total number of sampling points, 

the first segment ( '

1s ) of the signal is the first half of the original mode shape ‘signal’, 

that is, 12/21 ,..., Nddd . The second segment ( '

2s ) of the signal  is the second half of the 

original mode shape ‘signal’, that is, NNN ddd ,...,, 22/12/  . This process of dividing and 

reconstituting the signals is illustrated in Fig.2 (a-1) and (a-2) for modes 1 and 2, 

respectively, of the beam. There are two cases, namely symmetric and antisymmetric 

cases. For symmetric cases, the mode shape is symmetrical about the centre of the beam, 

as illustrated in Fig.2 (a-1) for the first mode. In this case, the modal data is cut into left 

and right segments '

1s  and '

2s , respectively. The right modal data segment is rotated 

about a vertical axis to produce a modified data set 2s  which is similar to the left 

modal data segment 1s . The two new signal series 1s  and 2s  are obtained as 

12/21 ,...,, Nddd (the signal series 1s ) and 12/1,...,,  NNN ddd (the signal series 2s ), as 

shown in Fig.2 (b-1). For antisymmetric cases, the mode shape is antisymmetrical about 

the centre of the beam as illustrated in Fig.2 (a-2) for the second mode. In this case, the 

right data segment is rotated twice: firstly about the vertical axis and secondly about the 

horizontal axis to produce a modified data set 2s . Thus, the two signal series will be 

12/21 ,...,, Nddd  (the signal series 1s ) and 12/1,...,,   NNN ddd  (the signal series 2s ), 

as shown in Fig.2 (b-2).  



11 

Then the wavelet coefficients, the difference of CWT of 1s  and 2s , will be obtained 

after CWTs of 1s  and 2s  are performed. For the case of a beam with small cracks, 

CWT of 1s  or 2s  includes some crack information. However, due to the smallness of 

the crack, the distortion of the transformed data caused by the crack is not very 

significant and, therefore, can not provide a clear crack detection. Finally, the difference 

of the CWT of 1s  and 2s  is determined to give a better crack indication than the 

CWT of the original mode shape. However, it is noted that the proposed method is only 

suitable for the simply supported beams with symmetric and antisymmetric mode 

shapes. 

4. Numerical example 

4.1 Finite element modal analysis 

In order to illustrate the applicability of the proposed method for crack detection, the 

natural frequencies and mode shapes of simply-supported cracked beams are computed 

using the ABAQUS finite element code. A simply supported beam with a single-sided 

transverse crack with a fixed depth cH , a crack width cW , and located at distance 

cl from the left support is shown in Fig.3. A mild steel beam of breadth b =100 mm, 

depth H =25 mm and length L =3000 mm was modeled using 20 node 3D brick 

element which is denoted in the ABAQUS FE package as C3D20R. The material 

properties of the beam are: Young’s modulus GPaE 210 , Density 3/7850 mKg , 

Poisson’s ratio 3.0v . In the FE model, the axial length of elements used in the 

analysis was el = 5mm for a 3000 mm long cracked beam when the elements are not 

near the crack location, but a more refined mesh size ( '

el = 0.5mm) used near the crack 
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location as shown in Fig.4. The first 50 natural frequencies and mode shapes of 

damaged and intact beams are computed.  

The cracks are 0.1 mm wide and 1 mm deep and are located at 500 mm, 1000 mm, 1500 

mm, 2000 mm and 2500 mm from the left end of the beam. The crack ratio of all the 

beams is 4%. Three sampling distances of the mode shape data are studied, namely, 

sx = 5, 25 and 50 mm. For the case of sampling distance 5 mm, the modal displacement 

data is sampled (from the top beam surface) at 5 mm interval along the lengths of the 

beams resulting in a total of 601 data points. But this represents too much measurement. 

Therefore, the cases of sampling distances of 25 mm and 50 mm, which are closer to 

real applications, are also studied. 

4.2 Comparison of CWT of original mode shape data with difference of CWTs 

The method proposed in the present work is compared with the method using CWT 

of the original mode shapes in the following part of this section. Fig.5 (a) to (d) show 

the wavelet coefficients of the original first, second, third and fourth mode shapes of the 

damaged beam with the crack located at 500 mm from the left end of the beam, and for 

a sampling distance of 5 mm. Four scales were used for analysis, namely: s 5, 15, 25 

and 35.  

For modes 1 to 3, Fig. 5(a) to (c) provide obvious (unambiguous) evidence of crack 

existence at 500 mm from the left end of the cracked beam only when the wavelet scale 

is equal to or greater than 25 (i.e. s  25).  But when s < 25, the figures do not provide 

very obvious evidence of crack existence. In fact, for mode 4, Fig.5 (d) shows very little 

discontinuity in the mode shape at the crack location.  
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Fig.6 (a) to (d) show the difference of the wavelet coefficients of 1s  and 2s  obtained 

from the first, second, third and fourth mode shape ‘signals’, respectively, of the 

damaged beam. All the figures provide evidence of crack existence at 500 mm from the 

left end of the beam because all the wavelet coefficients exhibit high peak values at this 

position. The results of the proposed method give better crack indication than those of 

the method using the CWT of the original mode shape data shown in Fig.5. 

To be certain about the presence of the crack, however, one has to examine in detail the 

behaviours of the wavelet maxima at these points as the scale increases. Fig. 7 presents 

3D and contour plots of the CWT coefficients of the original mode shape data for scales 

1̢48 of the first four mode shape data. It is seen that none of the figures clearly 

identifies the crack and its location. 

Fig.8 (a-1) to (d-1) are the 3D plots of the difference of the CWT coefficients of the two 

signal series 1s  and 2s  for the first four mode shape data of the damaged beam. 

Similarly, Fig.8 (a-2) to (d-2) are the contour plots of the difference of the CWT 

coefficients of the two signal series 1s  and 2s . The figures show very clear evidences 

of crack existence at 500 mm.  

It can be seen from Fig.8 that the absolute value of the modified wavelet maxima 

increases in a regular manner with increasing scale. Also, the absolute value of the 

wavelet maxima of higher mode shape data is greater than that of lower mode shape 

data. Comparing all the figures in Fig.7 and Fig.8, an important conclusion can be 

obtained that the difference of the CWT coefficients of 1s  and 2s  gives better crack 

indication than the CWT coefficients of the original mode shape data. Furthermore, the 
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wavelet maxima of higher original mode shape is also greater than that of lower original 

mode shape. In fact, the increase in magnitude of the coefficients for original mode 

shape and difference of mode shape is due to the fact that damage induced local 

response is easy to be captured by the higher modes [25]. Typically, damage is a local 

phenomenon. Local response is captured by higher frequency modes whereas lower 

frequency modes tend to capture the global response of the structure and are less 

sensitive to local changes in a structure [26]. 

5. Further verification of the proposed method in crack detection 

To verify the efficiency and practicability of the proposed method, a further 15 cases 

with cracks of varying location and using different sampling distances, as shown in 

Table 1, are studied. In this section, the effects of crack location and spatial intervals 

(sampling distances) of mode shape data on the difference of continuous wavelet 

transform (CWT) coefficients of the new signal series 1s  and 2s  are investigated.  

5.1 Effect of crack location 

Fig.9 (a-1) to (d-1) are, respectively, the 3D plots of the difference of the CWT 

coefficients of the two signal series 1s  and 2s  obtained from the first, second, third 

and fourth mode shape data of the damaged beam with the crack located at cl  = 1000 

mm. 

Fig.9 (a-2) to (d-2) show the corresponding contour plots of the difference of the CWT 

coefficients of the two signal series 1s  and 2s  obtained from the first four mode 

shape data of the damaged beam. There are obvious evidences of crack existence at 

location cl  = 1000 mm. Similar to the result given before, the absolute value of the 
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wavelet difference maxima increases in a regular manner with increasing scale. Also, 

the absolute value of the wavelet difference maxima of higher mode shape data is 

greater than that of lower mode shape data. The absolute value of the wavelet difference 

maxima of the first mode shape for the case of a crack located at 1000 mm is greater 

than that of the case of a crack located at 500 mm. However, the absolute value of the 

wavelet difference maxima of the second mode shape for the case of a crack located at 

1000 mm is equal to that of the case of a crack located at 500 mm. The reason is that the 

modal displacements of points far away from the node of a mode are greater than those 

of points close to the node of the mode. Thus, in the case of mode 1, the CWT at 1000 

mm is greater than that at 500 mm because location cl  = 1000 mm is further away 

from a node than location cl  = 500 mm. But in the case of mode 2, the CWT at 1000 

mm is equal to that at 500 mm because locations cl  = 1000 mm and cl  = 500 mm are 

equidistant from the nodes of the mode shape of mode 2. For mode 3, the crack location 

is the node of the mode, therefore, the modal displacement for this case is close to zero, 

as shown in Fig.9 (c-1) and (c-2). 

All the above discussion is focused on cracks located at the left part of the beam. A 

crack located at the right part of the beam is also investigated. Fig.10 (a-1) to (d-1) are, 

respectively, the 3D plots of the difference of the CWT coefficients of the two signal 

series 1s  and 2s  obtained from the first four mode shape data of the damaged beam 

with a crack located at 2000 mm from the left end of the beam. Fig.10 (a-2) to (d-2) 

show the corresponding contour plots of the difference of the CWT coefficients of the 

two signal series 1s  and 2s  for the first four mode shapes of the damaged beam. 

Except Fig.10 (c-1) and (c-2), the case of the crack located at the node of the third mode, 
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all the other figures indicate discontinuities at location 1000 mm which suggest the 

presence of a crack at this location. However, this is a pseudo location. The real location 

is at 2000 mm which is the mirror image of location 1000 mm. Also, in this case, the 

wavelet difference maxima are negative. However, the conclusion is still that the 

absolute value of the wavelet difference maxima increases in a regular manner with 

increasing scale. Furthermore, the absolute value of the wavelet maxima of higher mode 

shape data is greater than that of lower mode shape data.  

When the crack is located at 2500 mm from the left end of the damaged beam, the 3D 

plots of the difference of the CWT coefficients of the two signal series 1s  and 2s  

obtained from the first four mode shape data are shown in Fig.11 (a-1) to (d-1),  

respectively, while Fig.11 (a-2) to (d-2) show the corresponding contour plots of the 

difference of the CWT coefficients. These figures clearly indicate the presence of a 

crack at location 500 mm which is the mirror image of the actual location.  Comparing 

Fig 11 (a-1) to (d-1) with Fig 8(a-1) to (d-1), respectively, it is seen that when the crack 

is located at cl  = 500 mm, the maxima of the difference of the CWT coefficient is 

positive.  But when the crack is located at cl  = 2500 mm, the maxima of the 

difference of the CWT coefficient is negative.  Therefore, the sign of the maxima of 

the difference of the CWT coefficient can be used to identify whether a crack is located 

on the left or right half of the simply-supported beam.  

From the above discussion, it may be construed that the proposed method can only give 

good crack indication when the crack is not located at the centre of a beam. A legitimate 

question may be posed as to whether the proposed method is suitable for the special 

case of a crack located at the centre of beams. This problem is verified in the following.  
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A beam with a crack located at 1500 mm (the beam centre) from the left end of the 

beam, whose width and depth are 0.1 mm and 1 mm, respectively, is considered. The 

other parameters are the same as for the beams discussed previously. The original mode 

shapes are sampled at 5 mm interval along the lengths of the beams. Fig.12 (a-1) to (d-1) 

show the 3D plots of the difference of the CWT coefficients of the two signal series 1s  

and 2s  obtained from the first four mode shape data. The corresponding contour plots 

of the difference of the CWT coefficients are shown in Fig.12 (a-2) to (d-2). It can be 

seen from Fig.12 (a-1), (a-2), (c-1) and (c-2) that there is no crack information 

manifested in the difference of the CWT transform coefficient of the two signal series 

1s  and 2s  obtained from the first and third mode shapes. However, Fig.12 (b-1), (b-2), 

(d-1) and (d-2) show that the difference of the CWT coefficients for the second and 

fourth mode shapes indicates the presence of crack near the middle of the beam. 

The principle of the proposed method results in the above observation which is 

summarized in the following. The first mode shape of a cracked simply-supported beam 

is a symmetrical one, and the two new signal series 1s  ( 12/21 ,...,, Nddd ) and 2s  

( 12/1,...,,  NNN ddd ) are almost the same. Consequently, the difference between the 

CWT coefficient of 1s  and 2s  obtained from the first mode shape is very small. As 

for the second mode shape of a cracked simply-supported beam, it is an antisymmetrical 

one; the two new signal series 1s  ( 12/21 ,...,, Nddd ) and 2s  ( 12/1,...,,   NNN ddd ) 

have some difference in the cracked area. Hence, the difference of the CWT coefficients 

of 1s  and 2s obtained from the second mode shape can give some crack information. 

The results can be seen from Fig.12 (b-1), and (b-2), which give obvious peak in the 

cracked area or its neighborhood. It can be seen that the magnitude of the difference of 
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the CWT coefficients of the second mode shape is very small being of the order of 810 . 

However, all the previous figures show that for a crack located away from the centre, 

the magnitude of the CWT coefficient difference is much greater than 810 . The reason 

for the very small magnitude of the CWT coefficient difference when the crack is 

located at the centre of the beam is due to the fact that the modal displacements of the 

second mode shape near the centre are very small in magnitude because the centre of 

the beam is a node for mode 2 of vibration. This results in the difference of the CWT 

coefficients of 1s  and 2s obtained from the second mode shape being also small in 

magnitude. Nevertheless, the difference of the CWT coefficient of the second mode 

shape can still give crack information for damage detection.  

Similarly, it was observed that the CWT coefficient difference of the third mode shape 

data gave no crack information whereas the CWT coefficient difference of the fourth 

mode shape data gave crack information. Thus, it can be generalized that when a crack 

is located at the centre of a simply-supported beam, the difference of the CWT 

coefficient of the symmetrical mode shapes will not provide crack information; only the 

difference of the CWT coefficient of the antisymmetrical mode shapes will provide 

crack information. 

5.2 Effect of sampling distance 

The results presented in the previous section were based on a sampling interval 

(distance) of the mode shape data of 5 mm. When the modal displacement data are 

sampled at distance intervals of 25 mm along the length of the beams, it results in a total 

of 121 data points.  
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In Fig.13 (a-1) to (d-1) are shown the 3D plots of the difference of the CWT coefficients 

of the two signal series 1s  and 2s  obtained from the first four mode shape data of the 

same damaged beam. The sampling distance is 25 mm. Fig.13 (a-2) to (d-2) are, 

respectively, the corresponding contour plots. The results clearly indicate the presence 

of a crack at the correct location of 500 mm. 

A larger sampling distance of 50 mm was also investigated. Fig.14 (a-1) to (d-1) are, 

respectively, the 3D plots of the difference of the CWT coefficients of the two signal 

series 1s  and 2s  obtained from the first four mode shape data of the same damaged 

beam. The corresponding contour plots of the difference of the CWT coefficients of the 

two signal series 1s  and 2s  are shown in Fig.14 (a-2) to (d-2). The figures show that 

the accuracy of the crack location degrades as the sampling distance is increased. 

However, the difference of the CWT coefficient still gives reasonable information to 

enable crack detection. 

5.3 Modified approach for real applications using large sampling distance 

As discussed previously, the number of sensors available will be limited. This will result 

in large sampling distances. However, the accuracy of the detection of the crack location 

degrades as the sampling distance is increased. A larger sampling distance of 75 mm, 

which gives a total of 41 measurement points, was investigated.  

Fig.15 (a-1) to (d-1) are, respectively, the 3D plots of the difference of the CWT 

coefficients of the two signal series 1s  and 2s  obtained from the first four mode 

shape data of the same damaged beam. The corresponding contour plots of the 

difference of the CWT coefficients of the two signal series 1s  and 2s  are shown in 
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Fig.15 (a-2) to (d-2). Similar to the results using smaller sampling distance (i.e. sx  = 50, 

25, and 5 mm), the accuracy of the crack location degrades as the sampling distance is 

increased.  

Now, in order to increase the accuracy of crack detection, before performing a CWT of 

the modal data, a spline interpolation is used for the mode shapes which are obtained 

using large sampling distances. Subsequently, the difference of the CWT coefficient of 

the two signal series 1s  and 2s  which are obtained from the interpolated mode shape 

data, is calculated as a damage indicator. The interpolation method can also be found in 

the studies of Wang and Deng [9] and Douka et al. [15].  

A spline interpolation was applied to each set of 41 measured data points for the first 

two mode shapes. The interpolation step was 5 mm, resulting in a total number of 601 

derived data points. Fig.16 (a-1) to (d-1) are, respectively, the 3D plots of CWT 

coefficients of the first four interpolated mode shape data. Fig.16 (a-2) to (d-2) are, 

respectively, the contour plots of the CWT coefficients of the first four interpolated 

mode shape data. However, all figures in Fig.16 do not clearly identify the crack nor its 

location. Therefore, using only the CWT of the original interpolated mode data can not 

provide clear crack indication for small cracks (crack ratio less than 5%) even if the 

original modal data is interpolated.  

Fig.17 (a-1) to (d-1) are, respectively, the 3D plots of the difference of the CWT 

coefficients of the two signal series 1s  and 2s  obtained from the first four 

interpolated mode shape data of the damaged beam whose crack depth and width are 1 

mm and 0.1 mm. The corresponding contour plots of the difference are shown in Fig.17 

(a-2) to (d-2). The figures show very clear evidences of crack existence at 500 mm. 
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Comparing all the figures in Fig.16 and Fig.17, an important conclusion can be obtained 

that the modified approach gives better crack indication than the method using the CWT 

of the interpolated mode shape data, especially, when the crack ratio is relatively small 

(i.e. less than 5%) and the crack effect is small. Also, it can be seen from the figures in 

Fig.15 and Fig.17 that the accuracy of the crack detection increases dramatically after a 

spline interpolation is used for the mode shapes. 

6. Experimental verification of the proposed method in crack detection 

Experimental tests using a simply-supported aluminum beam were conducted. The 

dimensions of the damaged beam are 3100252400 mmBHL  . A crack, whose 

depth is 2.5mm, was located at mlc 4.0 . Fig.18 shows the experimental set-up used 

for testing. A random signal was generated and then amplified by a power amplifier, and 

exerted on the beam structure through a shaker. The response signal and input signal 

were respectively sensed by a PCB (PCB Piezotronics, Inc.) accelerometer and a PCB 

force sensor. The displacement data is sampled at 100 mm ( mmxs 100 ) interval along 

the lengths of the beam resulting in a total of 25 data points. Fig.19 shows the first four 

normalized measured mode shapes of the cracked beam.  

A spline interpolation was applied to each set of 25 measured data points for the first 

four mode shapes. The interpolation step was 2 mm, resulting in a total number of 1201 

derived data points. Fig.20 (a-1), (b-1), (c-1) and (d-1) show the 3D plots of the 

difference of the CWT coefficient of the two signal series 1s  and 2s  obtained from 

the first four interpolated mode shape data of the cracked aluminum beam. The 

corresponding contour plots of the difference are shown in Fig. 20 (a-2), (b-2), (c-2) and 

(d-2).  
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From the figures for mode 1 and mode 4, Fig.20 (a-1), (a-2), (d-1) and (d-2), it is seen 

that a crack is clearly located at 400 mm from the left end. However, from the figures 

for mode 2 and mode 3, due to the experimental noise effect, it is hard to determine the 

location of the crack though a peak appears at 400 mm from the left end. To improve the 

quality of the results, a simple denoising algorithm was employed: only wavelet 

coefficients of value more than 50% of the maximum value are considered. In other 

words, a threshold equal to 0.5 of the maximum value has been utilized [15]. The value 

of the wavelet coefficient is set to zero if it is less than 50% of maximum value, whilst 

the value of the wavelet coefficient is set to the difference between the wavelet 

coefficient and 50% of the maximum value if it is greater than 50% of maximum value. 

Symbolically, this is expressed as, 









cc

cccc
c

ˆ5.0          ,0

ˆ5.0,ˆ5.0
                              (15) 

where ccc ˆ and ,   are the original, modified and maximum values of the wavelet 

coefficient respectively. It should be noted that this simple algorithm is similar to but 

different from the hard-thresholding function used in previous work [27-29]. 

Fig.21 (a-1 to (d-1) show the 3D plots of the difference of the CWT coefficients whose 

values are greater than 50% of the maximum value. The corresponding contour plots of 

the difference are shown in Fig. 21 (a-2) to (d-2). It can be seen from Fig.21 (a-1), (a-2), 

(d-1) and (d-2) that the improved results show very clear evidences of crack existence at 

400 mm because all the wavelet coefficients exhibit high peak values at this position. 

However, for the mode 2, Fig.21 (b-1) and (b-2) show two almost equivalent peaks at 

400 mm and 600 mm. Therefore, it is hard to make the decision where the crack is 
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located. Furthermore, for the mode 3, Fig.21 (c-1) and (c-2) show the wrong crack 

location at 600 mm due to the experimental noise. Here, one conclusion can be obtained 

that crack detection cannot only rely on the parameter of one single mode in the real 

applications because it is hard to distinguish the crack effect and the noise effect. More 

modal parameters should be considered simultaneously. 

Secondly, to improve the results further, the number of spatial measurements should be 

increased substantially. It was not possible to carry out more measurements in the 

present work. Thirdly, in order to reduce the experimental noise effect, the following 

equation is proposed to be used as damage index for small crack detection in real 

applications,   





N

r

rd d
N

A
1

1
                          (16) 

where rd is the difference of the CWT coefficient of the two signal series 1s  and 

2s obtained from the mode shape for mode r , N  is the number of mode shapes 

considered, dA  is the average of the difference of the CWT coefficient. 

Fig.22 (a-1) shows the 3D plot of the average of the difference of the CWT coefficient 

of the two signal series 1s  and 2s  obtained from the first four interpolated mode 

shape data of the cracked aluminum beam. The corresponding contour plot of the 

average of the difference of the CWT coefficient is shown in Fig. 22 (a-2). The figures 

show very clear evidences of crack existence at 400 mm from the left end. 

Similarly, the denoising results are shown in Fig.22 (b-1) and (b-2), which are the 3D 

plot of the average of the difference of the CWT coefficient, and the corresponding 
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contour plot. It follows clearly that the crack is located at mmlc 400 . These 

experimental results therefore verify the efficiency and practicability of the proposed 

method. It is also noted that the computational time of the proposed method based on 

CWT coefficient difference is less than 200 ms and therefore the speed of processing of 

experimental data is not an issue. Furthermore, the procedure can be easily made 

automatic using Matlab wavelet and signal processing toolboxes, so the proposed 

method can be recommended for real monitoring applications. 

7. Concluding remarks 

This paper proposes a new approach based on the difference of the CWT coefficients of 

the two reconstructed signal series to provide a method without baseline modal 

parameters for damage detection in beam-like structures with small cracks, whose crack 

ratio ( HHr c / ) is less than 5%. The two signal series are obtained and reconstructed 

from the original mode shape ‘signal’ of a cracked beam. For a beam containing a single 

crack, one of these ‘signals’, which is apparently a smooth curve, actually exhibits a 

local peak or discontinuity in the region of damage because it includes additional 

response due to the crack.  

The modal responses of the damaged simply-supported beams used were computed 

using the finite element method. Different crack locations and sampling distances were 

studied. The results demonstrate the efficiency of the proposed method for crack 

detection, and they also provide a better crack indicator than the result of the CWT of 

the original mode shape ‘signal’. The simulated results show that the proposed method 

has great potential in crack detection of beam-like structures.  
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Experimental tests using a simply-supported aluminum beam were also conducted in the 

present work. In order to improve the accuracy of the crack detection, a spline 

interpolation was applied to each set of the measured data points for the first four mode 

shapes. The average of the difference of the CWT coefficient of all modes, is used as 

damage index for small crack detection in real applications. The experimental results 

demonstrate the precision and practicability of the proposed method, which can be 

recommended for real applications even when the crack is in the early state. 

It should be noted that the use of this method based on CWT requires fairly accurate 

estimates of the mode shapes. This is the difficulty for application to real structures. 

Generally, to get accurate estimates of the mode shapes, however, one needs detailed 

measurements of the mode shapes. This fact increases considerably the duration of the 

investigation and this is the main disadvantage of using mode shapes for crack 

identification. However, with the availability of fast measurement techniques, such as 

scanning laser vibrometer [30], this limitation is not a serious issue. On the other hand, 

it has been shown that less detailed measurement can still be used provided that a spline 

interpolation is used to improve the accuracy of the crack detection. 
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Appendix A. Nomenclature 

cl  crack location of cracked beam from the left support 

l  length of beams 

b  width of beams 

H  depth of beams 

cH  crack depth of beams 

cW  crack width of beams 

E  Young’s modulus of material 

  density of material 

  Poisson ratio of material 

eL  element length 

r  crack ratio 

)(x  mother wavelet function 

)(F  Fourier transform of )(x  

s  dilation parameter 

b  translation parameter 

)(xf  analyzed signal 

)(fF  Fourier transform of )(xf  
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),)(( bsW f  Continuous wavelet transform of )(xf  

x  duration of the mother wavelet of )(x  

  bandwidth of the mother wavelet of )(x  

x  local resolution of the CWT in time or space 

  local resolution of the CWT in frequency 

x  the centre of )(x  

  the centre of )(F  

2
  the classical norm in the space of square integrable functions 
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Fig.1. ‘Symmetrical 4’ wavelet: (a) Scaling function, (b) Wavelet function (mother wavelet) 
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Fig.2 Two series signals divided and reconstructed from the original mode shape data 
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Fig.3 Model of cracked simply-supported beam 

mmle 5.0'   mmle 5

Fig.4 Side view of FE mesh around cracked region 
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Fig.5 CWT coefficients of the original mode shapes for different scales: mmWc 1.0 ,

mmH c 1 , mmxs 5 , mmlc 500 ,  scale = 5,  scale =15, 

scale = 25,  scale = 35, (a) mode 1, (b) mode 2, (c) mode 3, and (d) mode 4 

(a) (b)

(c) (d)
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Fig.6 The difference of the CWT coefficients of 1s  and 2s  for different scales:

mmWc 1.0 , mmH c 1 , mmxs 5 , mmlc 500 ,  scale = 5, 

scale =15,  scale = 25,  scale = 35, (a) mode 1, (b) mode 2, (c) mode 3, and (d)

mode 4 

(a) (b)

(c) (d)
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Fig.7 3D (left) and contour (right) plots of the CWT of the original mode shapes showing

the trend of the wavelet modulus maxima for (a) mode 1, (b) mode 2, (c) mode 3, and (d)

mode 4; mmWc 1.0 , mmH c 1 , mmxs 5  mmlc 500  
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(b-2)(b-1) 

(c-1) (c-2)
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Fig.8 3D (left) and contour (right) plots of the difference of the CWT coefficients of 1s  and 

2s  showing the trend of the modified wavelet modulus maxima for (a) mode 1, (b) mode 2, 

(c) mode 3, and (d) mode 4; mmWc 1.0 , mmH c 1 , mmxs 5  mmlc 500  
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Fig.9 3D (left) and contour (right) plots of the difference of the CWT coefficients of 1s

and 2s  showing the trend of the wavelet modulus maxima for (a) mode 1, (b) mode 2, (c)

mode 3 and (d) mode 4; mmWc 1.0 , mmH c 1 , mmxs 5 , mmlc 1000  
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Fig.10 3D (left) and contour (right) plots of the difference of the CWT coefficients of 1s

and 2s  showing the trend of the wavelet modulus maxima for (a) mode 1, (b) mode 2, (c)

mode 3 and (d) mode 4; mmWc 1.0 , mmH c 1 , mmxs 5 , mmlc 2000  
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Fig.11 3D (left) and contour (right) plots of the difference of the CWT coefficients of 1s

and 2s  showing the trend of the wavelet modulus maxima for (a) mode 1, (b) mode 2,

(c) mode 3, and (d) mode 4; mmWc 1.0 , mmH c 1 , mmxs 5 , mmlc 2500  
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Fig.12 3D (left) and contour (right) plots of the difference of the CWT coefficients of 1s

and 2s  showing the trend of the wavelet modulus maxima for (a) mode 1, (b) mode 2, (c)

mode 3, and (d) mode 4; mmWc 1.0 , mmH c 1 , mmxs 5 , mmlc 1500  
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Fig.13 3D (left) and contour (right) plots of the difference of the CWT coefficients of 1s  and 

2s  showing the trend of the wavelet modulus maxima for sampling distance mmxs 25  : (a) 

mode 1, (b) mode 2, (c) mode 3 and (d) mode 4; mmWc 1.0 , mmH c 1 , mmlc 500
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Fig.14 3D (left) and contour (right) plots of the difference of the CWT coefficients of 1s  and

2s  showing the trend of the wavelet modulus maxima for sampling distance mmxs 50 : (a)

mode 1, (b) mode 2, (c) mode 3 and (d) mode 4; mmWc 1.0 , mmH c 1 , mmlc 500  
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Fig.15 3D (left) and contour (right) plots of the difference of the CWT coefficients of 1s  and

2s  showing the trend of the wavelet modulus maxima for sampling distance mmxs 75  (a)

mode 1, (b) mode 2, (c) mode 3 and (d) mode 4; mmWc 1.0 , mmH c 1 , mmlc 500  
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Fig.16 3D (left) and contour (right) plots of the CWT of the interpolated original mode

shapes showing the trend of the wavelet modulus maxima for sampling distance

mmxs 75 : (a) mode 1, (b) mode 2, (c) mode 3 and (d) mode 4; mmWc 1.0 ,

mmH c 1 , mmlc 500  
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Fig.17 3D (left) and contour (right) plots of the difference of the CWT coefficients of 1s

and 2s  obtained from the first two interpolated mode shapes showing the trend of the 

wavelet modulus maxima for (a) mode 1, (b) mode 2, (c) mode 3 and (d) mode 4;

mmWc 1.0 , mmH c 1 , mmxs 75 , mmlc 500  

(a-1) (a-2)

(b-1) (b-2)

(c-1) 

(d-1) 

(c-2)

(d-2)

[1E-3] 

2.5 

2.0 

1.5 

1.0 

0.5 

0 

-0.8 

-1.0 

-1.5 

[1E-3] 

1.6 

1.3 

1.0 

0.7 

0.4 

0.1 

-0.2 

-0.5 

-0.8 



47 

 

 

 

 

.  

 

 

Fig.18 Experimental Setup 

Fig.19 The first four measured mode shape of a cracked aluminum simply

supported beam ( mmWc 1 mmH c 5.2 , mmxs 100 , mmlc 400 ):

 mode 1,  mode 2,  mode 3,  mode 4. 
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Fig.20 3D plots of CWT coefficient differences from the first four experimental mode shapes of

an Aluminum beam showing the trend of the wavelet modulus maxima for (a) mode 1, (b) mode

2, (c) mode 3 and (d) mode 4; mmWc 1 , mmH c 5.2 , mmxs 100 , mmlc 400  
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Fig.21 3D plots of denoised CWT coefficient differences from the first four experimental mode

shapes of an Aluminum beam showing the trend of the wavelet modulus maxima for (a) mode 1, (b)

mode 2, (c) mode 3 and (d) mode 4; mmWc 1 , mmH c 5.2 , mmxs 100 , mmlc 400  
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Fig.22 3D plots of the average of the CWT coefficient difference of 1s  and 2s  obtained

from the first four experimental mode shapes of an aluminum beam showing the trend of

the wavelet modulus maxima for (a) original data (b) denoised data; mmWc 1 ,

mmH c 5.2 , mmxs 100 , mmlc 400  
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Table 1: Parameters of 15 cracked beams analysed: cl  is crack location, 

and sx  is the mode shape data sampling distance 

)(mmlc  )(mmxs  

500 5 

1000 25 

1500 50 

2000  

2500  

 


