106 research outputs found

    The Co-evolution of Disk and Star in Embedded Stages: The Case of the Very Low-mass Protostar

    Get PDF
    We have observed the CCH (N=3-2, J=7/2-5/2, F=4-3 and 3-2) and SO (6_7-5_6) emission at a 0"2 angular resolution toward the low-mass Class 0 protostellar source IRAS 15398-3359 with ALMA. The CCH emission traces the infalling-rotating envelope near the protostar with the outflow cavity extended along the northeast-southwest axis. On the other hand, the SO emission has a compact distribution around the protostar. The CCH emission is relatively weak at the continuum peak position, while the SO emission has a sharp peak there. Although the maximum velocity shift of the CCH emission is about 1 km s^-1 from the systemic velocity, a velocity shift higher than 2 km s^{-1} is seen for the SO emission. This high velocity component is most likely associated with the Keplerian rotation around the protostar. The protostellar mass is estimated to be 0.007^{+0.004}_{-0.003} from the velocity profile of the SO emission. With this protostellar mass, the velocity structure of the CCH emission can be explained by the model of the infalling-rotating envelope, where the radius of the centrifugal barrier is estimated to be 40 au from the comparison with the model. The disk mass evaluated from the dust continuum emission by assuming the dust temperature of 20 K-100 K is 0.1-0.9 times the stellar mass, resulting in the Toomre Q parameter of 0.4-5. Hence, the disk structure may be partly unstable. All these results suggest that a rotationally-supported disk can be formed in the earliest stages of the protostellar evolution

    Progress of Artificial Intelligence and Molecular Pathology

    Get PDF
    A pathological diagnosis that incorporates a molecular biology technique into a conventional pathological diagnosis based on morphology is called a molecular pathological diagnosis. Immunostaining, which detects proteins derived from oncogenes and tumor suppressor genes with specific antibodies, and FISH, which uses a fluorescently labeled nucleic acid probe to examine the amplification of a target gene, are already in clinical practice. In recent years, the application of genome analysis using a next-generation sequencer to pathological diagnosis has become available, and cancer genomic medicine has been rapidly expanding and evolving. In addition, new technologies such as liquid biopsy technology that detects proteins, DNA, microRNA, methylated DNA, etc. from samples that are less invasive at the time of collection, such as blood, are being incorporated into pathological diagnosis. The application of artificial intelligence(AI)is being studied around the world to reflect the diagnosis. This article introduces the application of rapid mass spectrometry(PESI-MS)to liquid biopsy and the development of diagnostic aids for urine cytology using AI

    Diagnostic value of texture analysis of apparent diffusion coefficient maps for differentiating fat-poor angiomyolipoma from non-clear-cell renal cell carcinoma

    Get PDF
    Purpose: To investigate the feasibility of texture analysis of apparent diffusion coefficient (ADC) maps for differentiating fat-poor angiomyolipomas (fpAMLs) from non-clear-cell renal cell carcinomas (non-ccRCCs). Methods: In this bi-institutional study, we included two consecutive cohorts from different institutions with pathologically confirmed solid renal masses: 67 patients (fpAML = 46; non-ccRCC = 21) for model development and 39 (fpAML = 24; non-ccRCC = 15) for validation. Patients underwent preoperative magnetic resonance imaging (MRI), including diffusion-weighted imaging. We extracted 45 texture features using a software with volumes of interest on ADC maps. Receiver operating characteristic curve analysis was performed to compare the diagnostic performance between the random forest (RF) model (derived from extracted texture features) and conventional subjective evaluation using computed tomography and MRI by radiologists. Results: RF analysis revealed that grey-level zone length matrix long-zone high grey-level emphasis was the dominant texture feature for diagnosing fpAML. The area under the curve (AUC) of the RF model to distinguish fpAMLs from non-ccRCCs was not significantly different between the validation and development cohorts (p = .19). In the validation cohort, the AUC of the RF model was similar to that of board-certified radiologists (p = .46) and significantly higher than that of radiology residents (p = .03). Conclusions: Texture analysis of ADC maps demonstrated similar diagnostic performance to that of board-certified radiologists for discriminating between fpAMLs and non-ccRCCs. Diagnostic performances in the development and validation cohorts were comparable despite using data from different imaging device manufacturers and institutions

    PESI-MS for Diagnostic Cytology

    Get PDF
    Objectives: Cytology and histology are 2 indispensable diagnostic tools for cancer diagnosis, which are rapidly increasing in importance with aging populations. We applied mass spectrometry (MS) as a rapid approach for swiftly acquiring nonmorphological information of interested cells. Conventional MS, which primarily rely on promoting ionization by pre-applying a matrix to cells, has the drawback of time-consuming both on data acquisition and analysis. As an emerging method, probe electrospray ionization-MS (PESI-MS) with a dedicated probe is capable to pierce sample and measure specimen in small amounts, either liquid or solid, without the requirement for sample pretreatment. Furthermore, PESI-MS is timesaving compared to the conventional MS. Herein, we investigated the capability of PESI-MS to characterize the cell types derived from the respiratory tract of human tissues. Study Design: PESI-MS analyses with DPiMS-2020 were performed on various type of cultured cells including 5 lung squamous cell carcinomas, 5 lung adenocarcinomas, 5 small-cell carcinomas, 4 malignant mesotheliomas, and 2 normal controls. Results: Several characteristic peaks were detected at around m/z 200 and 800 that were common in all samples. As expected, partial least squares-discriminant analysis of PESI-MS data distinguished the cancer cell types from normal control cells. Moreover, distinct clusters divided squamous cell carcinoma from adenocarcinoma. Conclusion: PESI-MS presented a promising potential as a novel diagnostic modality for swiftly acquiring specific cytological information

    Synthetic magnetic resonance imaging for primary prostate cancer evaluation:Diagnostic potential of a non-contrast-enhanced bi-parametric approach enhanced with relaxometry measurements

    Get PDF
    PURPOSE: Bi-parametric magnetic resonance imaging (bpMRI) with diffusion-weighted images has wide utility in diagnosing clinically significant prostate cancer (csPCa). However, bpMRI yields more false-negatives for PI-RADS category 3 lesions than multiparametric (mp)MRI with dynamic-contrast-enhanced (DCE)-MRI. We investigated the utility of synthetic MRI with relaxometry maps for bpMRI-based diagnosis of csPCa. METHODS: One hundred and five treatment-naïve patients who underwent mpMRI and synthetic MRI before prostate biopsy for suspected PCa between August 2019 and December 2020 were prospectively included. Three experts and three basic prostate radiologists evaluated the diagnostic performance of conventional bpMRI and synthetic bpMRI for csPCa. PI-RADS version 2.1 category 3 lesions were identified by consensus, and relaxometry measurements (T1-value, T2-value, and proton density [PD]) were performed. The diagnostic performance of relaxometry measurements for PI-RADS category 3 lesions in peripheral zone was compared with that of DCE-MRI. Histopathological evaluation results were used as the reference standard. Statistical analysis was performed using the areas under the receiver operating characteristic curve (AUC) and McNemar test. RESULTS: In 102 patients without significant MRI artefacts, the diagnostic performance of conventional bpMRI was not significantly different from that of synthetic bpMRI for all readers (p = 0.11–0.79). The AUCs of the combination of T1-value, T2-value, and PD (T1 + T2 + PD) for csPCa in peripheral zone for PI-RADS category 3 lesions were 0.85 for expert and 0.86 for basic radiologists, with no significant difference between T1 + T2 + PD and DCE-MRI for both expert and basic radiologists (p = 0.29–0.45). CONCLUSION: Synthetic MRI with relaxometry maps shows promise for contrast media-free evaluation of csPCa

    VISUAL-CC system uncovers the role of GSK3 as an orchestrator of vascular cell type ratio in plants

    Get PDF
    The phloem transports photosynthetic assimilates and signalling molecules. It mainly consists of sieve elements (SEs), which act as "highways" for transport, and companion cells (CCs), which serve as "gates" to load/unload cargos. Though SEs and CCs function together, it remains unknown what determines the ratio of SE/CC in the phloem. Here we develop a new culture system for CC differentiation in Arabidopsis named VISUAL-CC, which almost mimics the process of the SE-CC complex formation. Comparative expression analysis in VISUAL-CC reveals that SE and CC differentiation tends to show negative correlation, while total phloem differentiation is unchanged. This varying SE/CC ratio is largely dependent on GSK3 kinase activity. Indeed, gsk3 hextuple mutants possess many more SEs and fewer CCs, whereas gsk3 gain-of-function mutants partially increase the CC number. Taken together, GSK3 activity appears to function as a cell-fate switch in the phloem, thereby balancing the SE/CC ratio. Tamaki et al. develop VISUAL-CC to study SE-CC (sieve elements-companion cells) complex formation. They show that the balance in the SE/CC ratio is dependent on GSK3 activity using different genetic backgrounds. Their work provides insights on the role of GSK3 as a cell-fate switch in the phloem.Peer reviewe

    Clinical utility of the Vesical Imaging-Reporting and Data System for muscle-invasive bladder cancer between radiologists and urologists based on multiparametric MRI including 3D FSE T2-weighted acquisitions

    Get PDF
    Objectives: To investigate the clinical utility of the Vesical Imaging-Reporting and Data System (VI-RADS) by comparing its diagnostic performance for muscle-invasive bladder cancer (MIBC) between radiologists and urologists based on multiparametric MRI, including three-dimensional (3D) fast spin-echo (FSE) T2-weighted acquisitions. Methods: This study included 66 treatment-naïve patients (60 men, 6 women; mean age 74.0 years) with pathologically proven bladder cancer who underwent multiparametric MRI, including 3D FSE T2-weighted imaging, before transurethral bladder tumour resection between January 2010 and November 2018. The MRI scans were categorised according to the five-point VI-RADS score by four independent readers (two board-certified radiologists and board-certified urologists each), blinded to the histopathological findings. The VI-RADS scores were compared with the postoperative histopathological diagnosis. Interobserver agreement was assessed using weighted kappa coefficients. ROC analysis and generalised estimating equations were used to evaluate the diagnostic performance. Results: Forty-nine (74.2%) and 17 (25.8%) tumours were confirmed to be non-MIBC and MIBC, respectively, based on pathological examination. The interobserver agreement was good-to-excellent between all pairs of readers (range, 0.73–0.91). The urologists’ sensitivity/specificity values for DCE-MRI VI-RADS scores were significantly lower than those of radiologists. No significant differences were observed for the overall VI-RADS score. The AUC for the overall VI-RADS score was 0.94, 0.92, 0.89, and 0.87 for radiologists 1 and 2 and urologists 1 and 2, respectively. Conclusions: The VI-RADS score, based on multiparametric MRI including 3D FSE T2-weighted acquisitions, can be useful for radiologists and urologists to determine the bladder cancer muscle invasion status preoperatively. Key Points: • VI-RADS (using multiparametric MRI including 3D FSE T2-weighted acquisitions) achieves good to excellent interobserver agreement and has similar diagnostic performance for detecting muscle invasion by both radiologists and urologists. • The diagnostic performance of the overall VI-RADS score is high for both radiologists and urologists, particularly due to the dominant effect of diffusion-weighted imaging on the overall VI-RADS score. • The sensitivity and specificity values of the T2WI VI-RADS scores for four readers in our study (using 3D FSE T2-weighted acquisitions) were similar (with slightly higher specificity values) to previously published results (using 2D FSE T2-weighted acquisitions)

    Radiation-induced Liver Injury after 3D-conformal Radiotherapy for Hepatocellular Carcinoma: Quantitative Assessment Using Gd-EOB-DTPA-enhanced MRI

    Get PDF
    Focal liver reaction (FLR) appears in the hepatobiliary-phase images of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) following radiotherapy (RT). We investigated the threshold dose (TD) for FLR development in 13 patients with hepatocellular carcinoma (HCC) who underwent three-dimensional conformal radiotherapy (3D-CRT) with 45 Gy in 15 fractions. FLR volumes (FLRVs) were calculated based on planning CT images by referring to fused hepatobiliary-phase images. We also calculated the TD and the irradiated volumes (IVs) of the liver parenchyma at a given dose of every 5 Gy (IVdose) based on a dose-volume histogram (DVH). The median TD was 35.2 Gy. The median IV20, IV25, IV30, IV35, IV40, and IV45 values were 371.1, 274.8, 233.4, 188.6, 145.8, and 31.0 ml, respectively. The median FLRV was 144.9 ml. There was a significant difference between the FLRV and IV20, IV25, and IV45 (p<0.05), but no significant differences between the FLRV and IV30, IV35, or IV40. These results suggest that the threshold dose of the FLR is approx. 35 Gy in HCC patients who undergo 3D-CRT in 15 fractions. The percentage of the whole liver volume receiving a dose of more than 30-40 Gy (V30-40) is a potential candidate optimal DVH parameter for this fractionation schedule
    • …
    corecore