7 research outputs found

    The cytochrome bc1 complex of Rhodobacter capsulatus: ubiquinol oxidation in a dimeric Q-cycle?

    Get PDF
    AbstractWe studied the cytochrome bc1 complex (hereafter bc) by flash excitation of Rhodobacter capsulatus chromatophores. The reduction of the high-potential heme bh of cytochrome b (at 561 nm) and of cytochromes c (at 552 nm) and the electrochromic absorption transients (at 524 nm) were monitored after the first and second flashes of light, respectively. We kept the ubiquinone pool oxidized in the dark and concerned for the ubiquinol formation in the photosynthetic reaction center only after the second flash. Surprisingly, the first flash caused the oxidation of about one ubiquinol per bc dimer. Based on these and other data we propose a dimeric Q-cycle where the energetically unfavorable oxidation of the first ubiquinol molecule by one of the bc monomers is driven by the energetically favorable oxidation of the second ubiquinol by the other bc monomer resulting in a pairwise oxidation of ubiquinol molecules by the dimeric bc in the dark. The residual unpaired ubiquinol supposedly remains on the enzyme and is then oxidized after the first flash

    Investigation of the Stationary and Transient A1·− Radical in Trp → Phe Mutants of Photosystem I

    Get PDF
    Photosystem I (PS I) contains two symmetric branches of electron transfer cofactors. In both the A- and B-branches, the phylloquinone in the A1 site is π-stacked with a tryptophan residue and is H-bonded to the backbone nitrogen of a leucine residue. In this work, we use optical and electron paramagnetic resonance (EPR) spectroscopies to investigate cyanobacterial PS I complexes, where these tryptophan residues are changed to phenylalanine. The time-resolved optical data show that backward electron transfer from the terminal electron acceptors to P700·+ is affected in the A- and B-branch mutants, both at ambient and cryogenic temperatures. These results suggest that the quinones in both branches take part in electron transport at all temperatures. The electron-nuclear double resonance (ENDOR) spectra of the spin-correlated radical pair P700·+A1·− and the photoaccumulated radical anion A1·−, recorded at cryogenic temperature, allowed the identification of characteristic resonances belonging to protons of the methyl group, some of the ring protons and the proton hydrogen-bonded to phylloquinone in the wild type and both mutants. Significant changes in PS I isolated from the A-branch mutant are detected, while PS I isolated from the B-branch mutant shows the spectral characteristics of wild-type PS I. A possible short-lived B-branch radical pair cannot be detected by EPR due to the available time resolution; therefore, only the A-branch quinone is observed under conditions typically employed for EPR and ENDOR spectroscopies

    Electrogenic proton transfer in Rhodobacter sphaeroides reaction centers: effect of coenzyme Q10 substitution by decylubiquinone in the QB binding site

    Get PDF
    AbstractAn electrometric technique was used to investigate the effect of coenzyme Q10 (UQ), substitution by decylubiquinone (dQ) at the QB binding site of reaction centers (UQ-RC and dQ-RC, respectively) on the electrogenic proton transfer kinetics upon QB reduction in Rhodobacter sphaeroides chromatophores. Unlike dQ-RC, the kinetics of the second flash-induced proton uptake in UQ-RC clearly deviated from the mono-exponential one. The activation energy (about 30 kJ/mol) and the pH profile of the kinetics in dQ-RC were similar to those in UQ-RC, with the power law approximation used in the latter case. The interpretation of the data presumed the quinone translocation between the two binding positions within the QB site. It is proposed that the native isoprenyl side chain (in contrast to decyl chain) favors the equilibrium binding of neutral quinone at the redox-active ‘proximal’ position, but causes a higher barrier for the hydroquinone movement from ‘proximal’ to ‘distal’ position
    corecore