38 research outputs found
Malaria epidemiology in the Ahafo area of Ghana
<p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>malaria remains endemic in sub-Saharan Africa including Ghana. The epidemiology of malaria in special areas, such as mining areas needs to be monitored and controlled. Newmont Ghana Gold Limited is conducting mining activities in the Brong Ahafo Region of Ghana that may have an impact on the diseases such as malaria in the mining area.</p> <p>Methods</p> <p>Prior to the start of mining activities, a cross-sectional survey was conducted in 2006/2007 to determine malaria epidemiology, including malaria parasitaemia and anaemia among children < 5 years and monthly malaria transmission in a mining area of Ghana.</p> <p>Results</p> <p>A total of 1,671 households with a child less than five years were selected. About 50% of the household heads were males. The prevalence of any malaria parasitaemia was 22.8% (95% CI 20.8 - 24.9). <it>Plasmodium falciparum </it>represented 98.1% (95% CI 96.2 - 99.2) of parasitaemia. The geometric mean <it>P. falciparum </it>asexual parasite count was 1,602 (95% CI 1,140 - 2,252) and 1,195 (95% CI 985 - 1,449) among children < 24 months and ≥ 24 months respectively. Health insurance membership (OR 0.60, 95% CI 0.45 - 0.80, p = 0.001) and the least poor (OR 0.57, 95% CI 0.37 - 0.90, p = 0.001) were protected against malaria parasitaemia. The prevalence of anaemia was high among children < 24 months compared to children ≥ 24 months (44.1% (95% CI 40.0 - 48.3) and 23.8% (95% CI 21.2 - 26.5) respectively. About 69% (95% CI 66.3 - 70.9) of households own at least one ITN. The highest EIRs were record in May 2007 (669 <it>ib/p/m</it>) and June 2007 (826 <it>ib/p/m</it>). The EIR of <it>Anopheles gambiae </it>were generally higher than <it>Anopheles funestus</it>.</p> <p>Conclusion</p> <p>The baseline malaria epidemiology suggests a high malaria transmission in the mining area prior to the start of mining activities. Efforts at controlling malaria in this mining area have been intensified but could be enhanced with increased resources and partnerships between the government and the private sector.</p
Assessment of the genetic risks of a metallic alloy used in medical implants
The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials
Diabetes mellitus type 2 in urban Ghana: characteristics and associated factors
BACKGROUND: Sub-Saharan Africa faces a rapid spread of diabetes mellitus type 2 (DM2) but its potentially specific characteristics are inadequately defined. In this hospital-based study in Kumasi, Ghana, we aimed at characterizing clinical, anthropometric, socio-economic, nutritional and behavioural parameters of DM2 patients and at identifying associated factors.
METHODS: Between August 2007 and June 2008, 1466 individuals were recruited from diabetes and hypertension clinics, outpatients, community, and hospital staff. Fasting plasma glucose (FPG), serum lipids and urinary albumin were measured. Physical examination, anthropometry, and interviews on medical history, socio-economic status (SES), physical activity and nutritional behaviour were performed.
RESULTS: The majority of the 675 DM2 patients (mean FPG, 8.31 mmol/L) was female (75%) and aged 40-60 years (mean, 55 years). DM2 was known in 97% of patients, almost all were on medication. Many had hypertension (63%) and microalbuminuria (43%); diabetic complications occurred in 20%. Overweight (body mass index > 25 kg/m2), increased body fat (> 20% (male), > 33% (female)), and central adiposity (waist-to-hip ratio > 0.90 (male), > 0.85 (female)) were frequent occurring in 53%, 56%, and 75%, respectively. Triglycerides were increased (≥ 1.695 mmol/L) in 31% and cholesterol (≥ 5.17 mmol/L) in 65%. Illiteracy (46%) was high and SES indicators generally low. Factors independently associated with DM2 included a diabetes family history (adjusted odds ratio (aOR), 3.8; 95% confidence interval (95%CI), 2.6-5.5), abdominal adiposity (aOR, 2.6; 95%CI, 1.8-3.9), increased triglycerides (aOR, 1.8; 95%CI, 1.1-3.0), and also several indicators of low SES.
CONCLUSIONS: In this study from urban Ghana, DM2 affects predominantly obese patients of rather low socio-economic status and frequently is accompanied by hypertension and hyperlipidaemia. Prevention and management need to account for a specific risk profile in this population
Respiratory viruses in children hospitalized for acute lower respiratory tract infection in Ghana
<p>Abstract</p> <p>Background</p> <p>Acute respiratory tract infections are one of the major causes of morbidity and mortality among young children in developing countries. Information on the viral aetiology of acute respiratory infections in developing countries is very limited. The study was done to identify viruses associated with acute lower respiratory tract infection among children less than 5 years.</p> <p>Method</p> <p>Nasopharyngeal samples and blood cultures were collected from children less than 5 years who have been hospitalized for acute lower respiratory tract infection. Viruses and bacteria were identified using Reverse Transcriptase Real-Time Polymerase Chain Reaction and conventional biochemical techniques.</p> <p>Results</p> <p>Out of 128 patients recruited, 33(25.88%%, 95%CI: 18.5% to 34.2%) were positive for one or more viruses. Respiratory Syncytial Virus (RSV) was detected in 18(14.1%, 95%CI: 8.5% to 21.3%) patients followed by Adenoviruses (AdV) in 13(10.2%, 95%CI: 5.5% to 16.7%), Parainfluenza (PIV type: 1, 2, 3) in 4(3.1%, 95%CI: 0.9% to 7.8%) and influenza B viruses in 1(0.8%, 95%CI: 0.0 to 4.3). Concomitant viral and bacterial co-infection occurred in two patients. There were no detectable significant differences in the clinical signs, symptoms and severity for the various pathogens isolated. A total of 61.1% (22/36) of positive viruses were detected during the rainy season and Respiratory Syncytial Virus was the most predominant.</p> <p>Conclusion</p> <p>The study has demonstrated an important burden of respiratory viruses as major causes of childhood acute respiratory infection in a tertiary health institution in Ghana. The data addresses a need for more studies on viral associated respiratory tract infection.</p
Development and validation of a diagnostic aid for convulsive epilepsy in sub-Saharan Africa: a retrospective case-control study
Background: Identification of convulsive epilepsy in sub-Saharan Africa relies on access to resources that are often unavailable. Infrastructure and resource requirements can further complicate case verification. Using machine-learning techniques, we have developed and tested a region-specific questionnaire panel and predictive model to identify people who have had a convulsive seizure. These findings have been implemented into a free app for health-care workers in Kenya, Uganda, Ghana, Tanzania, and South Africa. Methods: In this retrospective case-control study, we used data from the Studies of the Epidemiology of Epilepsy in Demographic Sites in Kenya, Uganda, Ghana, Tanzania, and South Africa. We randomly split these individuals using a 7:3 ratio into a training dataset and a validation dataset. We used information gain and correlation-based feature selection to identify eight binary features to predict convulsive seizures. We then assessed several machine-learning algorithms to create a multivariate prediction model. We validated the best-performing model with the internal dataset and a prospectively collected external-validation dataset. We additionally evaluated a leave-one-site-out model (LOSO), in which the model was trained on data from all sites except one that, in turn, formed the validation dataset. We used these features to develop a questionnaire-based predictive panel that we implemented into a multilingual app (the Epilepsy Diagnostic Companion) for health-care workers in each geographical region. Findings: We analysed epilepsy-specific data from 4097 people, of whom 1985 (48·5%) had convulsive epilepsy, and 2112 were controls. From 170 clinical variables, we initially identified 20 candidate predictor features. Eight features were removed, six because of negligible information gain and two following review by a panel of qualified neurologists. Correlation-based feature selection identified eight variables that demonstrated predictive value; all were associated with an increased risk of an epileptic convulsion except one. The logistic regression, support vector, and naive Bayes models performed similarly, outperforming the decision-tree model. We chose the logistic regression model for its interpretability and implementability. The area under the receiver operator curve (AUC) was 0·92 (95% CI 0·91–0·94, sensitivity 85·0%, specificity 93·7%) in the internal-validation dataset and 0·95 (0·92–0·98, sensitivity 97·5%, specificity 82·4%) in the external-validation dataset. Similar results were observed for the LOSO model (AUC 0·94, 0·93–0·96, sensitivity 88·2%, specificity 95·3%). Interpretation: On the basis of these findings, we developed the Epilepsy Diagnostic Companion as a predictive model and app offering a validated culture-specific and region-specific solution to confirm the diagnosis of a convulsive epileptic seizure in people with suspected epilepsy. The questionnaire panel is simple and accessible for health-care workers without specialist knowledge to administer. This tool can be iteratively updated and could lead to earlier, more accurate diagnosis of seizures and improve care for people with epilepsy
A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.
The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The temporal dynamics of Plasmodium species infection after artemisinin-based combination therapy (ACT) among asymptomatic children in the Hohoe municipality, Ghana
Abstract Background The routine surveillance of asymptomatic malaria using nucleic acid-based amplification tests is essential in obtaining reliable data that would inform malaria policy formulation and the implementation of appropriate control measures. Methods In this study, the prevalence rate and the dynamics of Plasmodium species among asymptomatic children (n = 1697) under 5 years from 30 communities within the Hohoe municipality in Ghana were determined. Results and discussion The observed prevalence of Plasmodium parasite infection by polymerase chain reaction (PCR) was 33.6% (571/1697), which was significantly higher compared to that obtained by microscopy [26.6% (451/1697)] (P < 0.0001). Based on species-specific analysis by nested PCR, Plasmodium falciparum infection [33.6% (570/1697)] was dominant, with Plasmodium malariae, Plasmodium ovale and Plasmodium vivax infections accounting for 0.1% (1/1697), 0.0% (0/1697), and 0.0% (0/1697), respectively. The prevalence of P. falciparum infection among the 30 communities ranged from 0.0 to 82.5%. Following artesunate-amodiaquine (AS + AQ, 25 mg/kg) treatment of a sub-population of the participants (n = 184), there was a substantial reduction in Plasmodium parasite prevalence by 100% and 79.2% on day 7 based on microscopy and nested PCR analysis, respectively. However, there was an increase in parasite prevalence from day 14 to day 42, with a subsequent decline on day 70 by both microscopy and nested PCR. For parasite clearance rate analysis, we found a significant proportion of the participants harbouring residual Plasmodium parasites or parasite genomic DNA on day 1 [65.0% (13/20)], day 2 [65.0% (13/20)] and day 3 [60.0% (12/20)] after initiating treatment. Of note, gametocyte carriage among participants was low before and after treatment. Conclusion Taken together, the results indicate that a significant number of individuals could harbour residual Plasmodium parasites or parasite genomic DNA after treatment. The study demonstrates the importance of routine surveillance of asymptomatic malaria using sensitive nucleic acid-based amplification techniques