26 research outputs found
Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering
The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review
Regulation of expression and nucleotide sequence of the Anabaena variabilis recA gene.
The expression of the cyanobacterial recA gene, isolated from Anabaena variabilis, has been examined at the levels of transcript and protein abundance. Exposure of the cyanobacterium to a variety of DNA-damaging agents, including mitomycin C, methyl methanesulfonate, and UV irradiation, results in a rapid increase in the abundance of the recA transcript above basal levels as determined by Northern (RNA) blot analysis. A concomitant increase in the abundance of a 37- to 38-kilodalton polypeptide was also detected by Western (immuno-) blot analysis of soluble cyanobacterial polypeptides using polyclonal antiserum directed against the Escherichia coli recA protein. The cyanobacterial polypeptide is of the same molecular mass as that synthesized by an in vitro, DNA-directed procaryotic transcription-translation system primed with an A. variabilis genomic fragment containing the recA gene. Nucleotide sequence analysis of the cyanobacterial gene revealed a protein of 358 amino acids with a molecular weight of 38,403 daltons. The A. variabilis and E. coli recA genes share similarity at 58% of the amino acid residues; however, an E. coli-like lexA repressor-binding site is not present in the A. variabilis promoter region. The similarities of A. variabilis and E. coli recA expression and gene sequence are discussed
Cell surface acid-base properties of the cyanobacterium Synechococcus: Influences of nitrogen source, growth phase and N:P ratios
The distribution of many trace metals in the oceans is controlled by biological uptake. Recently, Liu et al. (2015) demonstrated the propensity for a marine cyanobacterium to adsorb cadmium from seawater, suggesting that cell surface reactivity might also play an important role in the cycling of metals in the oceans. However, it remains unclear how variations in cyanobacterial growth rates and nutrient supply might affect the chemical properties of their cellular surfaces. In this study we used potentiometric titrations and Fourier Transform Infrared (FT-IR) spectrometry to profile the key metabolic changes and surface chemical responses of a Synechococcus strain, PCC 7002, during different growth regimes. This included testing various nitrogen (N) to phosphorous (P) ratios (both nitrogen and phosphorous dependent), nitrogen sources (nitrate, ammonium and urea) and growth stages (exponential, stationary, and death phase). FT-IR spectroscopy showed that varying the growth substrates on which Synechococcus cells were cultured resulted in differences in either the type or abundance of cellular exudates produced or a change in the cell wall components. Potentiometric titration data were modeled using three distinct proton binding sites, with resulting pKa values for cells of the various growth conditions in the ranges of 4.96-5.51 (pKa(1)), 6.67-7.42 (pKa(2)) and 8.13-9.95 (pKa(3)). According to previous spectroscopic studies, these pKa ranges are consistent with carboxyl, phosphoryl, and amine groups, respectively. Comparisons between the titration data (for the cell surface) and FT-IR spectra (for the average cellular changes) generally indicate (1) that the nitrogen source is a greater determinant of ligand concentration than growth phase, and (2) that phosphorus limitation has a greater impact on Synechococcus cellular and extracellular properties than does nitrogen limitation. Taken together, these techniques indicate that nutritional quality during cell growth can noticeably influence the expression of cell surface ligands and their measurable densities. Given that cell surface charge ultimately affects metal adsorption, our results suggest that the cycling of metals by Synechococcus cells in the oceans may vary regionally