48 research outputs found

    Portable Electron Microscopy for ISS and Beyond

    Get PDF
    Advances in space exploration have evolved in lockstep with key technology advances in diverse fields such as materials science, biological science, and engineering risk management. Research in these areas, where structure and physical processes come together, can proceed rapidly in part due to sophisticated ground-based analytical tools that help re-searchers develop technologies and engineering processes that push frontiers of human space exploration. Electron microscopes (EM) are an example of such a workhorse tool, lending a unique blend of strong optical scattering, high native resolution, large depth of focus, and spectroscopy via characteristic X-ray emission, providing exquisite high-magnification structural imaging and chemical analysis. Ground-based EMs have been essential in NASA research for many years. In particular, in mineralogy and petrology, EM is used to understand the origin and evolution of the solar system, particularly rocky bodies. In microbiology, EM has helped visualize the architecture of tissues and cells. In engineering/materials science, EM has been used to characterize particulate debris in air and water samples, determine pore sizes in ceramics/catalysts, understand the nature of fibers, determine composition and morphology of new and existing materials, and characterize micro-textures of vapor deposited films. EM is highly effective at investigating a wide variety of nanoscale materials/biomaterials at the core of many of NASAs inquiries. Despite exquisite optical performance and versatility, EMs are traditionally large, heavy, and have high power consumption. They are also expensive so they tend to be housed at universities and large research institutions, or at major industrial laboratory sites with support staff, supplies, and skilled operators. Since most organizations cannot support their own EM, samples are often sent to these large institutions and service centers to be imaged, at great expense and of-ten with delay of weeks to months for complex analyses. Complexity, high cost, and maintenance associated with collecting EM image data has until now severely limited fields in which EM is used. Making EM accessible outside constrained terrestrial laboratory environments will bring EMs performance and versatility to a much broader range of scientific and engineering endeavors, including in space

    Flight Readiness of Mochii ISS-NL Portable Spectroscopic Electron Microscope

    Get PDF
    Electron microscopes (EMs), are workhorse tools serving diverse fields such as materials science, biological science, and engineering. Scanning EMs (SEMs) in particular enable high magnification study and pinpoint chemical analyses of structures down to the nanoscale by providing a powerful blend of strong optical scattering, high native resolution, large depth of focus, and energy-dispersive X-ray spectroscopy (EDS). Mochii is the worlds smallest production electron microscope, scheduled to travel to the International Space Station (ISS) this spring where it will serve as an ISS National Laboratory (ISSNL) microgravity facility on successful demonstration. We previously reported on progress preparing Mochii for space flight, in particular flight integration verifications and science application testing. These included standard integration testing such as electromagnetic interference and flight vibration, and extend to unique functional testing such as magnetic susceptibility and extreme analog environment testing under the sea. Presently, Mochii payload flight hardware has completed testing and was handed over to NASAs ISS payload processing facility in Houston. It will make its way to the the east coast for launch currently scheduled on Space-X CRS-20 for Mission increment 62 in March 2020

    Gender Specific Disruptions in Emotion Processing in Younger Adults with Depression

    Get PDF
    Background: One of the principal theories regarding the biological basis of major depressive disorder (MDD) implicates a dysregulation of emotion-processing circuitry. Gender differences in how emotions are processed and relative experience with emotion processing might help to explain some of the disparities in the prevalence of MDD between women and men. This study sought to explore how gender and depression status relate to emotion processing. Methods: This study employed a 2 (MDD status) × 2 (gender) factorial design to explore differences in classifications of posed facial emotional expressions (N=151). Results: For errors, there was an interaction between gender and depression status. Women with MDD made more errors than did nondepressed women and men with MDD, particularly for fearful and sad stimuli (Ps Ps P=.01). Men with MDD, conversely, performed similarly to control men (P=.61). Conclusions: These results provide novel and intriguing evidence that depression in younger adults (years) differentially disrupts emotion processing in women as compared to men. This interaction could be driven by neurobiological and social learning mechanisms, or interactions between them, and may underlie differences in the prevalence of depression in women and men. Depression and Anxiety, 2009. Published 2008 Wiley-Liss, Inc

    Albert Pierrepoint and the cultural persona of the twentieth-century hangman

    Get PDF
    Albert Pierrepoint was Britain’s most famous 20th-century hangman. This article utilises diverse sources in order to chart his public representation, or cultural persona, as hangman from his rise to prominence in the mid-1940s to his portrayal in the biopic Pierrepoint(2005). It argues that Pierrepoint exercised agency in shaping this persona through publishing his autobiography and engagement with the media, although there were also representations that he did not influence. In particular, it explores three iterations of his cultural persona – the Professional Hangman, the Reformed Hangman and the Haunted Hangman. Each of these built on and reworked historical antecedents and also communicated wider understandings and contested meanings in relation to capital punishment. As a hangman who remained in the public eye after the death penalty in Britain was abolished, Pierrepoint was an important, authentic link to the practice of execution and a symbolic figure in debates over reintroduction. In the 21st century, he was portrayed as a victim of the ‘secondary trauma’ of the death penalty, which resonated with worldwide campaigns for abolition

    Intuitionistic Fuzzy Time Series Functions Approach for Time Series Forecasting

    Get PDF
    Fuzzy inference systems have been commonly used for time series forecasting in the literature. Adaptive network fuzzy inference system, fuzzy time series approaches and fuzzy regression functions approaches are popular among fuzzy inference systems. In recent years, intuitionistic fuzzy sets have been preferred in the fuzzy modeling and new fuzzy inference systems have been proposed based on intuitionistic fuzzy sets. In this paper, a new intuitionistic fuzzy regression functions approach is proposed based on intuitionistic fuzzy sets for forecasting purpose. This new inference system is called an intuitionistic fuzzy time series functions approach. The contribution of the paper is proposing a new intuitionistic fuzzy inference system. To evaluate the performance of intuitionistic fuzzy time series functions, twenty-three real-world time series data sets are analyzed. The results obtained from the intuitionistic fuzzy time series functions approach are compared with some other methods according to a root mean square error and mean absolute percentage error criteria. The proposed method has superior forecasting performance among all methods

    Prospects for Aberration Corrected Nanocrystallogrphy

    No full text
    corecore