3,620 research outputs found

    Constraints on UV Absorption in the Intracluster Medium of Abell 1030

    Get PDF
    We present results from an extensive HST spectroscopic search for UV absorption lines in the spectrum of the quasar B2~1028+313, which is associated with the central dominant galaxy in the cluster Abell~1030 (z=0.178z=0.178). This is one of the brightest known UV continuum sources located in a cluster, and therefore provides an ideal opportunity to obtain stringent constraints on the column densities of any cool absorbing gas that may be associated with the intracluster medium (ICM). Our HST spectra were obtained with the FOS and GHRS, and provide continuous coverage at rest-frame wavelengths from 975\sim 975 to 4060~\AA, thereby allowing the investigation of many different elements and ionization levels. We utilize a new technique that involves simultaneous fitting of large numbers of different transitions for each species, thereby yielding more robust constraints on column densities than can be obtained from a single transition. This method yields upper limits of 10111013\lesssim 10^{11} - 10^{13} cm2^{-2} on the column densities of a wide range of molecular, atomic and ionized species that may be associated with the ICM. We also discuss a possible \Lya and C IV absorption system associated with the quasar. We discuss the implications of the upper limits on cool intracluster gas in the context of the physical properties of the ICM and its relationship to the quasar.Comment: Astrophysical Journal, in press, 19 pages, includes 5 PostScript figures. Latex format, uses aas2pp4.sty and epsfig.sty file

    Distinct neuroinflammatory signatures exist across genetic and sporadic ALS cohorts

    Get PDF
    Acknowledgments This research was funded in part by the Wellcome Trust (108890/Z/15/Z) to OMR, a Pathological Society and Jean Shanks Foundation grant (JSPS CLSG 202002) to JMG and JOS, an NIH grant (5-R01-NS127186-02) to JMG, FMW, and JOS, a Motor Neuron Disease (MND) Scotland grant to JMG and CRS (2021/MNDS/RP/8440GREG), and a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (215454/Z/19/Z) to CRS. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. This work would not be possible without the resources of the Edinburgh Brain Bank. The authors declare no conflicts of interest.Preprin

    Mechanisms underlying capsaicin effects in canine coronary artery: implications for coronary spasm

    Get PDF
    AIMS: The TRPV1, transient receptor potential vanilloid type 1, agonist capsaicin is considered to be beneficial for cardiovascular health because it dilates coronary arteries through an endothelial-dependent mechanism and may slow atheroma progression. However, recent reports indicate that high doses of capsaicin may constrict coronary arterioles and even provoke myocardial infarction. Thus far, the mechanisms by which TRPV1 activation modulates coronary vascular tone remain poorly understood. This investigation examined whether there is a synergistic interplay between locally acting vasoconstrictive pro-inflammatory hormones (autacoids) and capsaicin effects in the coronary circulation. METHODS AND RESULTS: Experiments were performed in canine conduit coronary artery rings and isolated smooth muscle cells (CASMCs). Isometric tension measurements revealed that 1-10 μM capsaicin alone did not affect resting tension of coronary artery rings. In contrast, in endothelium-intact rings pre-contracted with a Gq/11-coupled FP/TP (prostaglandin F/thromboxane) receptor agonist, prostaglandin F2α (PGF2α; 10 μM), capsaicin first induced transient dilation that was followed by sustained contraction. In endothelium-denuded rings pre-contracted with PGF2α or thromboxane analogue U46619 (1 μM, a TP receptor agonist), capsaicin induced only sustained contraction. Blockers of the TP receptor or TRPV1 significantly inhibited capsaicin effects, but these were still observed in the presence of 50 μM nifedipine and 70 mM KCl. Capsaicin also potentiated 20 mM KCl-induced contractions. Fluorescence imaging experiments in CASMCs revealed that the Gq/11-phospholipase C (PLC)-protein kinase C (PKC) and Ca(2+)-PLC-PKC pathways are likely involved in sensitizing CASMC TRPV1 channels. CONCLUSION: Capsaicin alone does not cause contractions in conduit canine coronary artery; however, pre-treatment with pro-inflammatory prostaglandin-thromboxane agonists may unmask capsaicin's vasoconstrictive potential

    Two novel missense mutations in ABCA1 result in altered trafficking and cause severe autosomal recessive HDL deficiency

    Get PDF
    AbstractExtremely low concentrations of high density lipoprotein (HDL)-cholesterol and apolipoprotein (apo) AI are features of Tangier disease caused by autosomal recessive mutations in ATP-binding cassette transporter A1 (ABCA1). Less deleterious, but dominantly inherited mutations cause HDL deficiency. We investigated causes of severe HDL deficiency in a 42-year-old female with progressive coronary disease.ApoAI-mediated efflux of cholesterol from the proband's fibroblasts was less than 10% of normal and nucleotide sequencing revealed inheritance of two novel mutations in ABCAI, V1704D and L1379F. ABCA1 mRNA was approximately 3-fold higher in the proband's cells than in control cells; preincubation with cholesterol increased it 5-fold in control and 8-fold in the proband's cells, but similar amounts of ABCA1 protein were present in control and mutant cells. When transiently transfected into HEK293 cells, confocal microscopy revealed that both mutant proteins were retained in the endoplasmic reticulum, while wild-type ABCA1 was located at the plasma membrane.Severe HDL deficiency in the proband was caused by two novel autosomal recessive mutations in ABCA1, one (V1704D) predicted to lie in a transmembrane segment and the other (L1379F) in a large extracellular loop. Both mutations prevent normal trafficking of ABCA1, thereby explaining their inability to mediate apoA1-dependent lipid efflux

    Distinct neuroinflammatory signatures exist across genetic and sporadic amyotrophic lateral sclerosis cohorts

    Get PDF
    Acknowledgements This work would not be possible without the resources of the Edinburgh Brain Bank, and the tissue donors and their families. Funding This research was funded in part by the Wellcome Trust (108890/Z/15/Z) to O.M.R., a Pathological Society of Great Britain & Ireland and Jean Shanks Foundation grant (JSPS CLSG 202002) to J.M.G. and J.O., a National Institutes of Health (NIH) grant (5-R01-NS127186-02) to J.M.G., F.M.W., and J.O., a Motor Neuron Disease (MND) Scotland grant to J.M.G. and C.R.S. (2021/MNDS/RP/8440GREG), and a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (215454/Z/19/Z) to C.R.S.Peer reviewedPublisher PD

    Pharmacogenomic variants and drug interactions identified through the genetic analysis of clozapine metabolism

    Get PDF
    Objective: Clozapine is the only effective medication for treatment-resistant schizophrenia, but its worldwide use is still limited because of its complex titration protocols. While the discovery of pharmacogenomic variants of clozapine metabolism may improve clinical management, no robust findings have yet been reported. This study is the first to adopt the framework of genome-wide association studies (GWASs) to discover genetic markers of clozapine plasma concentrations in a large sample of patients with treatment-resistant schizophrenia. Methods: The authors used mixed-model regression to combine data from multiple assays of clozapine metabolite plasma concentrations from a clozapine monitoring service and carried out a genome-wide analysis of clozapine, norclozapine, and their ratio on 10,353 assays from 2,989 individuals. These analyses were adjusted for demographic factors known to influence clozapine metabolism, although it was not possible to adjust for all potential mediators given the available data. GWAS results were used to pinpoint specific enzymes and metabolic pathways and compounds that might interact with clozapine pharmacokinetics. Results: The authors identified four distinct genome-wide significant loci that harbor common variants affecting the metabolism of clozapine or its metabolites. Detailed examination pointed to coding and regulatory variants at several CYP* and UGT* genes as well as corroborative evidence for interactions between the metabolism of clozapine, coffee, and tobacco. Individual effects of single single-nucleotide polymorphisms (SNPs) fine-mapped from these loci were large, such as the minor allele of rs2472297, which was associated with a reduction in clozapine concentrations roughly equivalent to a decrease of 50 mg/day in clozapine dosage. On their own, these single SNPs explained from 1.15% to 9.48% of the variance in the plasma concentration data. Conclusions: Common genetic variants with large effects on clozapine metabolism exist and can be found via genome-wide approaches. Their identification opens the way for clinical studies assessing the use of pharmacogenomics in the clinical management of patients with treatment-resistant schizophrenia

    A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia

    Get PDF
    chizophrenia is a complex highly heritable disorder. Genome-wide association studies (GWAS) have identified multiple loci that influence the risk of developing schizophrenia, although the causal variants driving these associations and their impacts on specific genes are largely unknown. We identify a significant correlation between schizophrenia risk and expression at 89 genes in dorsolateral prefrontal cortex (P ≤ 9.43x10−6), including 20 novel genes. Genes whose expression correlate with schizophrenia were enriched for those involved in abnormal CNS synaptic transmission (PFDR = 0.02) and antigen processing and presentation of peptide antigen via MHC class I (PFDR = 0.02). Within the CNS synaptic transmission set, we identify individual significant candidate genes to which we assign direction of expression changes in schizophrenia. The findings provide strong candidates for experimentally probing the molecular basis of synaptic pathology in schizophrenia

    Sleep EEG in young people with 22q11.2 deletion syndrome:a cross-sectional study of slow-waves, spindles and correlations with memory and neurodevelopmental symptoms

    Get PDF
    Background:: Young people living with 22q11.2 Deletion Syndrome (22q11.2DS) are at increased risk of schizophrenia, intellectual disability, attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In common with these conditions, 22q11.2DS is also associated with sleep problems. We investigated whether abnormal sleep or sleep-dependent network activity in 22q11.2DS reflects convergent, early signatures of neural circuit disruption also evident in associated neurodevelopmental conditions. Methods:: In a cross-sectional design, we recorded high-density sleep EEG in young people (6–20 years) with 22q11.2DS (n=28) and their unaffected siblings (n=17), quantifying associations between sleep architecture, EEG oscillations (spindles and slow waves) and psychiatric symptoms. We also measured performance on a memory task before and after sleep. Results:: 22q11.2DS was associated with significant alterations in sleep architecture, including a greater proportion of N3 sleep and lower proportions of N1 and REM sleep than in siblings. During sleep, deletion carriers showed broadband increases in EEG power with increased slow-wave and spindle amplitudes, increased spindle frequency and density, and stronger coupling between spindles and slow-waves. Spindle and slow-wave amplitudes correlated positively with overnight memory in controls, but negatively in 22q11.2DS. Mediation analyses indicated that genotype effects on anxiety, ADHD and ASD were partially mediated by sleep EEG measures. Conclusions:: This study provides a detailed description of sleep neurophysiology in 22q11.2DS, highlighting alterations in EEG signatures of sleep which have been previously linked to neurodevelopment, some of which were associated with psychiatric symptoms. Sleep EEG features may therefore reflect delayed or compromised neurodevelopmental processes in 22q11.2DS, which could inform our understanding of the neurobiology of this condition and be biomarkers for neuropsychiatric disorders. Funding:: This research was funded by a Lilly Innovation Fellowship Award (UB), the National Institute of Mental Health (NIMH 5UO1MH101724; MvdB), a Wellcome Trust Institutional Strategic Support Fund (ISSF) award (MvdB), the Waterloo Foundation (918-1234; MvdB), the Baily Thomas Charitable Fund (2315/1; MvdB), MRC grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment (IMAGINE) (MR/L011166/1; JH, MvdB and MO), MRC grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment 2 (IMAGINE-2) (MR/T033045/1; MvdB, JH and MO); Wellcome Trust Strategic Award ‘Defining Endophenotypes From Integrated Neurosciences’ Wellcome Trust (100202/Z/12/Z MO, JH). NAD was supported by a National Institute for Health Research Academic Clinical Fellowship in Mental Health and MWJ by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Science (202810/Z/16/Z). CE and HAM were supported by Medical Research Council Doctoral Training Grants (C.B.E. 1644194, H.A.M MR/K501347/1). HMM and UB were employed by Eli Lilly & Co during the study; HMM is currently an employee of Boehringer Ingelheim Pharma GmbH & Co KG. The views and opinions expressed are those of the author(s), and not necessarily those of the NHS, the NIHR or the Department of Health funders

    Combining Information from Common Type 2 Diabetes Risk Polymorphisms Improves Disease Prediction

    Get PDF
    BACKGROUND: A limited number of studies have assessed the risk of common diseases when combining information from several predisposing polymorphisms. In most cases, individual polymorphisms only moderately increase risk (~20%), and they are thought to be unhelpful in assessing individuals' risk clinically. The value of analyzing multiple alleles simultaneously is not well studied. This is often because, for any given disease, very few common risk alleles have been confirmed. METHODS AND FINDINGS: Three common variants (Lys23 of KCNJ11, Pro12 of PPARG, and the T allele at rs7903146 of TCF7L2) have been shown to predispose to type 2 diabetes mellitus across many large studies. Risk allele frequencies ranged from 0.30 to 0.88 in controls. To assess the combined effect of multiple susceptibility alleles, we genotyped these variants in a large case-control study (3,668 controls versus 2,409 cases). Individual allele odds ratios (ORs) ranged from 1.14 (95% confidence interval [CI], 1.05 to 1.23) to 1.48 (95% CI, 1.36 to 1.60). We found no evidence of gene-gene interaction, and the risks of multiple alleles were consistent with a multiplicative model. Each additional risk allele increased the odds of type 2 diabetes by 1.28 (95% CI, 1.21 to 1.35) times. Participants with all six risk alleles had an OR of 5.71 (95% CI, 1.15 to 28.3) compared to those with no risk alleles. The 8.1% of participants that were double-homozygous for the risk alleles at TCF7L2 and Pro12Ala had an OR of 3.16 (95% CI, 2.22 to 4.50), compared to 4.3% with no TCF7L2 risk alleles and either no or one Glu23Lys or Pro12Ala risk alleles. CONCLUSIONS: Combining information from several known common risk polymorphisms allows the identification of population subgroups with markedly differing risks of developing type 2 diabetes compared to those obtained using single polymorphisms. This approach may have a role in future preventative measures for common, polygenic diseases
    corecore