29 research outputs found

    Observation of Zn Dendrite Growth via Operando Digital Microscopy and Time-Lapse Tomography

    Get PDF
    The zinc-ion battery is one of the promising candidates for next-generation energy storage devices beyond lithium technology due to the earthā€™s abundance of Zn materials and their high volumetric energy density (5855 mA h cmā€“3). To date, the formation of Zn dendrites during chargeā€“discharge cycling still hinders the practical application of zinc-ion batteries. It is, therefore, crucial to understand the formation mechanism of the zinc dendritic structure before effectively suppressing its growth. Here, the application of operando digital optical microscopy and in situ lab-based X-ray computed tomography (X-ray CT) is demonstrated to probe and quantify the morphologies of zinc electrodeposition/dissolution under multiple galvanostatic plating/stripping conditions in symmetric Zn||Zn cells. With the combined microscopy approaches, we directly observed the dynamic nucleation and subsequent growth of Zn deposits, the heterogeneous transportation of charged clusters/particles, and the evolution of ā€˜deadā€™ Zn particles via partial dissolution. Zn electrodeposition at the early stage is mainly attributed to activation, while the subsequent dendrite growth is driven by diffusion. The high current not only facilitates the formation of sharp dendrites with a larger mean curvature at their tips but also leads to dendritic tip splitting and the creation of a hyper-branching morphology. This approach offers a direct opportunity to characterize dendrite formation in batteries with a metal anode in the laboratory

    Functional diversity of brain networks supports consciousness and verbal intelligence

    Get PDF
    Ā© 2018, The Author(s). How are the myriad stimuli arriving at our senses transformed into conscious thought? To address this question, in a series of studies, we asked whether a common mechanism underlies loss of information processing in unconscious states across different conditions, which could shed light on the brain mechanisms of conscious cognition. With a novel approach, we brought together for the first time, data from the same paradigmā€”a highly engaging auditory-only narrativeā€”in three independent domains: anesthesia-induced unconsciousness, unconsciousness after brain injury, and individual differences in intellectual abilities during conscious cognition. During external stimulation in the unconscious state, the functional differentiation between the auditory and fronto-parietal systems decreased significantly relatively to the conscious state. Conversely, we found that stronger functional differentiation between these systems in response to external stimulation predicted higher intellectual abilities during conscious cognition, in particular higher verbal acuity scores in independent cognitive testing battery. These convergent findings suggest that the responsivity of sensory and higher-order brain systems to external stimulation, especially through the diversification of their functional responses is an essential feature of conscious cognition and verbal intelligence

    Recent advances in acoustic diagnostics for electrochemical power systems

    Get PDF
    Acknowledgments The authors would like to gratefully acknowledge the EPSRC for supporting the electrochemical research in the Electrochemical Innovation Lab (EP/R020973/1; EP/R023581/1; EP/N032888/1; EP/R023581/1; EP/P009050/1; EP/M014371/1; EP/M009394; EP/L015749/1; EP/K038656/1) and Innovate UK for funding the VALUABLE project (Grant No. 104182). The authors would also like to acknowledge the Royal Academy of Engineering for funding Robinson and Shearing through ICRF1718\1\34 and CiET1718 respectively and the Faraday Institution (EP/S00353/1, Grant Nos. FIRG003, FIRG014). The authors also acknowledge the STFC for supporting Shearing and Brett (ST/K00171X/1) and ACEA for supporting ongoing research at the EIL. Support from the National Measurement System of the UK Department for Business, Energy and Industrial Strategy is also gratefully acknowledged.Peer reviewedPublisher PD

    Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling

    Get PDF
    The phase separation dynamics in graphitic anodes significantly affects lithium plating propensity, which is the major degradation mechanism that impairs the safety and fast charge capabilities of automotive lithium-ion batteries. In this study, we present comprehensive investigation employing operando high-resolution optical microscopy combined with non-equilibrium thermodynamics implemented in a multi-dimensional (1D+1D to 3D) phase-field modeling framework to reveal the rate-dependent spatial dynamics of phase separation and plating in graphite electrodes. Here we visualize and provide mechanistic understanding of the multistage phase separation, plating, inter/intra-particle lithium exchange and plated lithium back-intercalation phenomena. A strong dependence of intra-particle lithiation heterogeneity on the particle size, shape, orientation, surface condition and C-rate at the particle level is observed, which leads to early onset of plating spatially resolved by a 3D image-based phase-field model. Moreover, we highlight the distinct relaxation processes at different state-of-charges (SOCs), wherein thermodynamically unstable graphite particles undergo a drastic intra-particle lithium redistribution and inter-particle lithium exchange at intermediate SOCs, whereas the electrode equilibrates much slower at low and high SOCs. These physics-based insights into the distinct SOC-dependent relaxation efficiency provide new perspective towards developing advanced fast charge protocols to suppress plating and shorten the constant voltage regime

    Investigation of the effect of temperature on lithium-sulfur cell cycle life performance using system identification and x-ray tomography

    Get PDF
    In this study, cycle life performance of a prototype lithium-sulfur (Liāˆ’S) pouch cell is investigated using system identification and X-ray tomography methods. Liāˆ’S cells are subjected to characterization and ageing tests while kept inside a controlled-temperature chamber. After completing the experimental tests, two analytical approaches are used: i) The parameter variations of an equivalent-circuit model due to ageing are determined using a system identification technique. ii) Physical changes of the aged Liāˆ’S cells are analyzed using X-ray tomography. The results demonstrate that Liāˆ’S cell's degradation is significantly affected by temperature. Comparing to 10ā€‰Ā°C, Liāˆ’S cell capacity fade happens 1.4 times faster at 20ā€‰Ā°C whereas this number increases to 3.3 at 30ā€‰Ā°C. In addition, X-ray results show a significant swelling when temperature rises from 10 to 20ā€‰Ā°C, correspondingly the gas volume increases from 13 to 62ā€…mm3.Innovate UK: TS/R013780/1. European Union funding: 814471. Engineering and Physical Sciences Research Council (EPSRC): EP/S003053/1, FIRG014, FIRG027

    Operando ultrasonic monitoring of lithium-ion battery temperature and behaviour at different cycling rates and under drive cycle conditions

    Get PDF
    Effective diagnostic techniques for Li-ion batteries are vital to ensure that they operate in the required voltage and temperature window to prevent premature degradation and failure. Ultrasonic analysis has been gaining significant attention as a low cost, fast, non-destructive, operando technique for assessing the state-of-charge and state-of-health of Li-ion batteries. Thus far, the majority of studies have focused on a single C-rate at relatively low charge and discharge currents, and as such the relationship between the changing acoustic signal and C-rate is not well understood. In this work, the effect of cell temperature on the acoustic signal is studied and shown to have a strong correlation with the signal's time-of-flight. This correlation allows for the cell temperature to be inferred using ultrasound and to compensate for these effects to accurately predict the state-of-charge regardless of the C-rate at which the cell is being cycled. Ultrasonic state-of-charge monitoring of a cell during a drive cycle illustrates the suitability of this technique to be applied in real-world situations, an important step in the implementation of this technique in battery management systems with the potential to improve pack safety, performance, and efficiency

    Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements

    Get PDF
    Identification of the state-of-health (SoH) of Li-ion cells is a vital tool to protect operating battery packs against accelerated degradation and failure. This is becoming increasingly important as the energy and power densities demanded by batteries and the economic costs of packs increase. Here, ultrasonic time-of-flight analysis is performed to demonstrate the technique as a tool for the identification of a range of defects and SoH in Li-ion cells. Analysis of large, purpose-built defects across multiple length scales is performed in pouch cells. The technique is then demonstrated to detect a microscale defect in a commercial cell, which is validated by examining the acoustic transmission signal through the cell. The location and scale of the defects are confirmed using X-ray computed tomography, which also provides information pertaining to the layered structure of the cells. The demonstration of this technique as a methodology for obtaining direct, non-destructive, depth-resolved measurements of the condition of electrode layers highlights the potential application of acoustic methods in real-time diagnostics for SoH monitoring and manufacturing processes
    corecore