222 research outputs found
Realization of an Inductance Scale Traceable to the Quantum Hall Effect Using an Automated Synchronous Sampling System
In this paper, the realization of an inductance scale from 1~H to 10~H
for frequencies ranging between 50~Hz to 20~kHz is presented. The scale is
realized directly from a series of resistance standards using a fully automated
synchronous sampling system. A careful systematic characterization of the
system shows that the lowest uncertainties, around 12~H/H, are obtained
for inductances in the range from 10~mH to 100~mH at frequencies in the kHz
range. This new measurement system which was successfully evaluated during an
international comparison, provides a primary realization of the henry, directly
traceable to the quantum Hall effect. An additional key feature of this system
is its versatility. In addition to resistance-inductance (R-L) comparison, any
kind of impedances can be compared: R-R, R-C, L-L or C-C, giving this sampling
system a great potential of use in many laboratories around the world
Compendium for precise ac measurements of the quantum Hall resistance
In view of the progress achieved in the field of the ac quantum Hall effect,
the Working Group of the Comite Consultatif d'Electricite et Magnetisme (CCEM)
on the AC Quantum Hall Effect asked the authors of this paper to write a
compendium which integrates their experiences with ac measurements of the
quantum Hall resistance. In addition to the important early work performed at
the Bureau International des Poids et Mesures and the National Physical
Laboratory, UK, further experience has been gained during a collaboration of
the authors' institutes NRC, METAS, and PTB, and excellent agreement between
the results of different national metrology institutes has been achieved. This
compendium summarizes the present state of the authors' knowledge and reviews
the experiences, tests and precautions that the authors have employed to
achieve accurate measurements of the ac quantum Hall effect. This work shows
how the ac quantum Hall effect can be reliably used as a quantum standard of ac
resistance having a relative uncertainty of a few parts in 10^8.Comment: 26 pages, 8 figure
Nanoscale Contact Mechanics between Two Grafted Polyelectrolyte Surfaces
The adhesive and frictional behavior of end-grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films (brushes) in contact with atomic force microscope tips from which PDMAEMA or poly(methacrylic acid) (PMAA) were grafted has been shown to be a strong function of pH in aqueous solution. The interaction between the brush-coated surfaces is determined by a combination of electrostatic and noncovalent interactions, modulated by the effect of the solvation state on the brush and the resulting area of contact between the probe and the surface. For cationic PDMAEMA-PDMAEMA contacts at low pH, the brushes are highly solvated; a combination of electrostatic repulsion and a high degree of solvation (leading to a significant osmotic pressure) leads to a small area of contact, weak adhesion, and energy dissipation through plowing. As the pH increases, the electrostatic repulsion and the osmotic pressure decrease, leading to an increase in the area of contact and a concomitant increase in the strength of adhesion through hydrophobic interactions; as a consequence, the friction-load relationship becomes nonlinear as shear processes contribute to friction and the mechanics are fitted by DMT theory and, at higher pH, by the JKR model. For PDMAEMA-PMAA, the electrostatic interaction is attractive at neutral pH, leading to a large adhesion force, a large area of contact, and a nonlinear friction-load relationship. However, as the pH becomes either very small or very large, a significant charge is acquired by one of the contacting surfaces, leading to a large amount of bound solvent and a significant osmotic pressure that resists deformation. As a consequence, the area of contact is small, adhesion forces are reduced, and the friction-load relationship is linear, with energy dissipation dominated by molecular plowing
Spreading of a Macroscopic Lattice Gas
We present a simple mechanical model for dynamic wetting phenomena. Metallic
balls spread along a periodically corrugated surface simulating molecules of
liquid advancing along a solid substrate. A vertical stack of balls mimics a
liquid droplet. Stochastic motion of the balls, driven by mechanical vibration
of the corrugated surface, induces diffusional motion. Simple theoretical
estimates are introduced and agree with the results of the analog experiments,
with numerical simulation, and with experimental data for microscopic spreading
dynamics.Comment: 19 pages, LaTeX, 9 Postscript figures, to be published in Phy. Rev. E
(September,1966
A multichamber fluidic device for 3D cultures under interstitial flow with live imaging: Development, characterization, and applications
Interstitial flow is an important biophysical cue that can affect capillary morphogenesis, tumor cell migration, and fibroblast remodeling of the extracellular matrix, among others. Current models that incorporate interstitial flow and that are suitable for live imaging lack the ability to perform multiple simultaneous experiments, for example, to compare effects of growth factors, extracellular matrix composition, etc. We present a nine-chamber radial flow device that allows simultaneous 3D fluidic experiments for relatively long-term culture with live imaging capabilities. Flow velocity profiles were characterized by fluorescence recovery after photobleaching (FRAP) for flow uniformity and estimating the hydraulic conductivity. We demonstrate lymphatic and blood capillary morphogenesis in fibrin gels over 10 days, comparing flow with static conditions as well as the effects of an engineered variant of VEGF that binds fibrin via Factor XIII. We also demonstrate the culture of contractile fibroblasts and co-cultures with tumor cells for modeling the tumor microenvironment. Therefore, this device is useful for studies of capillary morphogenesis, cell migration, contractile cells like fibroblasts, and multicellular cultures, all under interstitial flow. © 2009 Wiley Periodicals, Inc
Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges
A new traceability chain for the derivation of the farad from dc quantum Hall
effect has been implemented at INRIM. Main components of the chain are two new
coaxial transformer bridges: a resistance ratio bridge, and a quadrature
bridge, both operating at 1541 Hz. The bridges are energized and controlled
with a polyphase direct-digital-synthesizer, which permits to achieve both main
and auxiliary equilibria in an automated way; the bridges and do not include
any variable inductive divider or variable impedance box. The relative
uncertainty in the realization of the farad, at the level of 1000 pF, is
estimated to be 64E-9. A first verification of the realization is given by a
comparison with the maintained national capacitance standard, where an
agreement between measurements within their relative combined uncertainty of
420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table
Single- and multi-walled carbon nanotubes viewed as elastic tubes with Young's moduli dependent on layer number
The complete energy expression of a deformed single-walled carbon nanotube
(SWNT) is derived in the continuum limit from the local density approximation
model proposed by Lenosky {\it et al.} \lbrack Nature (London) {\bf 355}, 333
(1992)\rbrack and shows to be content with the classic shell theory by which
the Young's modulus, the Poisson ratio and the effective wall thickness of
SWNTs are obtained as TPa, , , respectively.
The elasticity of a multi-walled carbon nanotube (MWNT) is investigated as the
combination of the above SWNTs of layer distance and the
Young's modulus of the MWNT is found to be an apparent function of the number
of layers, , varying from 4.70TPa to 1.04TPa for N=1 to .Comment: 4 pages, 1 figur
Modelling Small-Scale Drifting Snow with a Lagrangian Stochastic Model Based on Large-Eddy Simulations
Observations of drifting snow on small scales have shown that, in spite of nearly steady winds, the snow mass flux can strongly fluctuate in time and space. Most drifting snow models, however, are not able to describe drifting snow accurately over short time periods or on small spatial scales as they rely on mean flow fields and assume equilibrium saltation. In an attempt to gain understanding of the temporal and spatial variability of drifting snow on small scales, we propose to use a model combination of flow fields from large-eddy simulations (LES) and a Lagrangian stochastic model to calculate snow particle trajectories and so infer snow mass fluxes. Model results show that, if particle aerodynamic entrainment is driven by the shear stress retrieved from the LES, we can obtain a snow mass flux varying in space and time. The obtained fluctuating snow mass flux is qualitatively compared to field and wind-tunnel measurements. The comparison shows that the model results capture the intermittent behaviour of observed drifting snow mass flux yet differences between modelled turbulent structures and those likely to be found in the field complicate quantitative comparisons. Results of a model experiment show that the surface shear-stress distribution and its influence on aerodynamic entrainment appear to be key factors in explaining the intermittency of drifting snow
What static and dynamic properties should slalom skis possess? Judgments by advanced and expert skiers
Flexural and torsional rigidity are important properties of skis. However, the flexural and torsional rigidity that lead to optimal performance remain to be established. In the present study, four pairs of slalom skis that differed in flexural and torsional rigidity were tested by advanced and expert skiers. Using a 10-item questionnaire, different aspects of the skisâ performance were rated on a 9-point scale. For each pair of skis, physical measurements were compared with the ratings of the two groups of skiers. Correlations (Spearman) were then determined between (i) different mechanical properties of the skis (static and dynamic), (ii) subjective assessments of the participants, and (iii) properties of the skis and the participantsâ assessments. The latter showed that expert skiers rate the aspects of the skis more accurately than advanced skiers. Importantly, expert skiers are particularly sensitive to torsion of the skis. These results suggest that such highly rated elements should be addressed in future ski designs
- âŠ