10 research outputs found

    OxyR-dependent formation of DNA methylation patterns in OpvABOFF and OpvABON cell lineages of Salmonella enterica

    Get PDF
    Phase variation of the Salmonella enterica opvAB operon generates a bacterial lineage with standard lipopolysaccharide structure (OpvABOFF) and a lineage with shorter O-antigen chains (OpvABON). Regulation of OpvAB lineage formation is transcriptional, and is controlled by the LysR-type factor OxyR and by DNA adenine methylation. The opvAB regulatory region contains four sites for OxyR binding (OBSA-D), and four methylatable GATC motifs (GATC1-4). OpvABOFF and OpvABON cell lineages display opposite DNA methylation patterns in the opvAB regulatory region: (i) in the OpvABOFF state, GATC1 and GATC3 are non-methylated, whereas GATC2 and GATC4 are methylated; (ii) in the OpvABON state, GATC2 and GATC4 are non-methylated, whereas GATC1 and GATC3 are methylated. We provide evidence that such DNA methylation patterns are generated by OxyR binding. The higher stability of the OpvABOFF lineage may be caused by binding of OxyR to sites that are identical to the consensus (OBSA and OBSc), while the sites bound by OxyR in OpvABON cells (OBSB and OBSD) are not. In support of this view, amelioration of either OBSB or OBSD locks the system in the ON state. We also show that the GATC-binding protein SeqA and the nucleoid protein HU are ancillary factors in opvAB control.Ministerio de Economía y Competitividad BIO2013-44220-REuropea Regional Fund CSD2008- 00013Junta de Andalucía P10-CVI-587

    Trajectories and Drivers of Genome Evolution in Surface-Associated Marine Phaeobacter

    Get PDF
    The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. Our study reveals that the evolutionary trajectories of surface-associated marine bacteria can differ significantly from free-living marine bacteria or marine generalists

    Host specificity for bacterial, archaeal and fungal communities determined for high- and low-microbial abundance sponge species in two genera

    Get PDF
    Sponges are engaged in intimate symbioses with a diversity of microorganisms from all three domains of life, namely Bacteria, Archaea and Eukarya. Sponges have been well studied and categorized for their bacterial communities, some displaying a high microbial abundance (HMA), while others show low microbial abundance (LMA). However, the associated Archaea and Eukarya have remained relatively understudied. We assessed the bacterial, archaeal and eukaryotic diversities in the LMA sponge species Dysidea avara and Dysidea etheria by deep amplicon sequencing, and compared the results to those in the HMA sponges Aplysina aerophoba and Aplysina cauliformis. D. avara and A. aerophoba are sympatric in the Mediterranean Sea, while D. etheria and A. cauliformis are sympatric in the Caribbean Sea. The bacterial communities followed a host-specific pattern, with host species identity explaining most of the variation among samples. We identified OTUs shared by the Aplysina species that support a more ancient association of these microbes, before the split of the two species studied here. These shared OTUs are suitable targets for future studies of the microbial traits that mediate interactions with their hosts. Even though the archaeal communities were not as rich as the bacterial ones, we found a remarkable diversification and specificity of OTUs of the family Cenarchaeaceae and the genus Nitrosopumilus in all four sponge species studied. Similarly, the differences in fungal communities were driven by sponge identity. The structures of the communities of small eukaryotes such as dinophytes and ciliophores (alveolates), and stramenopiles, could not be explained by either sponge host, sponge genus or geographic location. Our analyses suggest that the host specificity that was previously described for sponge bacterial communities also extends to the archaeal and fungal communities, but not to other microbial eukaryotes

    Delineation of a subgroup of the genus Paraburkholderia, including P. terrae DSM 17804(T), P. hospita DSM 17164(T), and four soil-isolated fungiphiles, reveals remarkable genomic and ecological features: Proposal for the definition of a P. hospita species cluster

    Get PDF
    The fungal-interactive (fungiphilic) strains BS001, BS007, BS110, and BS437 have previously been preliminarily assigned to the species Paraburkholderia terrae. However, in the (novel) genus Paraburkholderia, an as-yet unresolved subgroup exists, that clusters around Paraburkholderia hospita (containing the species P. terrae, P. hospita, andParaburkholderia caribensis). To shed light on the precise relationships across the respective type strains and the novel fungiphiles, we here compare their genomic and ecophysiological features. To reach this goal, the genomes of the three type strains, with sizes ranging from 9.0 to 11.5Mb, were de novo sequenced and the high-quality genomes analyzed. Usingwhole-genome, ribosomal RNA and marker-gene-concatenate analyses, close relationships betweenP. hospita DSM 17164(T) andP. terrae DSM 17804(T), versusmore remote relationships toP. caribensisDSM 13236(T), were found. All four fungiphilic strains clustered closely to the two-species cluster. Analyses of average nucleotide identities (ANIm) and tetranucleotide frequencies (TETRA) confirmed the close relationships between P. hospita DSM 17164(T) and P. terrae DSM 17804(T) (ANIm = 95.42; TETRA = 0.99784), as comparedwith the similarities of each one of these strains to P. caribensis DSM 13236(T). A species cluster was thus proposed. Furthermore, high similarities of the fungiphilic strains BS001, BS007, BS110, and BS437with this cluster were found, indicating that these strains alsomake part of it, being closely linked to P. hospita DSM 17164(T) (ANIm = 99%; TETRA = 0.99). We propose to coin this cluster the P. hospita species cluster (containing P. hospita DSM 17164(T), P. terrae DSM 17804(T), and strains BS001, BS007, BS110, and BS437), being clearly divergent from the closely related species P. caribensis (type strain DSM 13236(T)). Moreover, given their close relatedness to P. hospita DSM 17164(T) within the cluster, we propose to rename the four fungiphilic strains as members of P. hospita. Analysis of migratory behavior along with fungal growth through soil revealed both P. terrae DSM 17804(T) and P. hospita DSM 17164(T) (next to the four fungiphilic strains) to be migrationproficient, whereas P. caribensis DSM 13236(T) was a relatively poor migrator. Examination of predicted functions across the genomes of the seven investigated strains, next to several selected additional ones, revealed the commonpresence of features in the P. hospita cluster strains that are potentially important in interactionswith soil fungi. Thus, genes encoding specificmetabolic functions, biofilm formation (pelABCDEFG, pgaABCD, alginate-related genes), motility/chemotaxis, type-4 pili, and diverse secretion systems were found

    Determinants of Acidobacteria activity inferred from the relative abundances of 16S rRNA transcripts in German grassland and forest soils

    No full text
    16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA:rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C:N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision

    Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters

    Get PDF
    Interactions occur between two or more organisms affecting each other. Interactions are decisive for the ecology of the organisms. Without direct experimental evidence the analysis of interactions is difficult. Correlation analyses that are based on co-occurrences are often used to approximate interaction. Here, we present a new mathematical model to estimate the interaction strengths between taxa, based on changes in their relative abundances across environmental gradients

    Seasonal controls on grassland microbial biogeography: Are they governed by plants, abiotic properties or both?

    Get PDF
    Temporal dynamics create unique and often ephemeral conditions that can influence soil microbial biogeography at different spatial scales. This study investigated the relation between decimeter to meter spatial variability of soil microbial community structure, plant diversity, and soil properties at six dates from April through November. We also explored the robustness of these interactions over time. An historically unfertilized, unplowed grassland in southwest Germany was selected to characterize how seasonal variability in the composition of plant communities and substrate quality changed the biogeography of soil microorganisms at the plot scale (10 m x 10 m). Microbial community spatial structure was positively correlated with the local environment, i.e. physical and chemical soil properties, in spring and autumn, while the density and diversity of plants had an additional effect in the summer period. Spatial relationships among plant and microbial communities were detected only in the early summer and autumn periods when aboveground biomass increase was most rapid and its influence on soil microbial communities was greatest due to increased demand by plants for nutrients. Individual properties exhibited varying degrees of spatial structure over the season. Differential responses of Gram positive and Gram negative bacterial communities to seasonal shifts in soil nutrients were detected. We concluded that spatial distribution patterns of soil microorganisms change over a season and that chemical soil properties are more important controlling factors than plant density and diversity. Finer spatial resolution, such as the mm to cm scale, as well as taxonomic resolution of microbial groups, could help determine the importance of plant species density, composition, and growth stage in shaping microbial community composition and spatial patterns. (C) 2014 The Authors. Published by Elsevier Ltd. All rights reserved

    Theoretical and experimental investigation on laminar boundary layer under cnoidal wave motion

    Get PDF
    Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity. Land use intensification is a major driver of biodiversity change. Here the authors measure diversity across multiple trophic levels in agricultural grassland landscapes of varying management, finding decoupled responses of above- and belowground taxa to local factors and a strong impact of landscape-level land use
    corecore