497 research outputs found

    The assessment of efforts to return to work in the European Union

    Get PDF
    Background: Assessment of efforts to promote return-to-work (RTW) includes all efforts (vocational and non-vocational) designed to improve the work ability of the sick-listed employee and increase the chance to return to work. Aim of the study was to investigate whether in 13 European countries these RTW efforts are assessed and to compare the procedures by means of six criteria. METHODS: Data were gathered in the taxonomy project of the European Union of Medicine in Assurance and Social Security and by means of an additional questionnaire. RESULTS: In seven countries RTW efforts are subject of the assessment in relation to the application for disability benefits. Description of RTW efforts is a prerequisite in five countries. Guidelines on the assessment of RTW efforts are only available in the Netherlands and no countries report the use of the ICF model. Based on the results of the additional questionnaire, the assessor is a social scientist or a physician. The information used to assess RTW efforts differs, from a report on the RTW process to medical information. A negative outcome of the assessment leads to delay of the application for disability benefits or to application for rehabilitation subsidy. Conclusion: RTW efforts are assessed in half of the participating European countries. When compared, the characteristics of the assessment of RTW efforts in the participating European countries show both similarities and differences. This study may facilitate the gathering and exchange of knowledge and experience between countries on the assessment of RTW efforts

    Arctic sea-ice change: a grand challenge of climate science

    Get PDF
    Over the period of modern satellite observations, Arctic sea-ice extent at the end of the melt season (September) has declined at a rate of >11% per decade, and there is evidence that the rate of decline has accelerated during the last decade.While climate models project further decreases in seaice mass and extent through the 21st century, the model ensemble mean trend over the period of instrumental records is smaller than observed. Possible reasons for the apparent discrepancy between observations and model simulations include observational uncertainties, vigorous unforced climate variability in the high latitudes, and limitations and shortcomings of the models stemming in particular from gaps in understanding physical process. The economic significance of a seasonally sea-ice-free future Arctic, the increased connectivity of a warmer Arctic with changes in global climate, and large uncertainties in magnitude and timing of these impacts make the problem of rapid sea-ice loss in the Arctic a grand challenge of climate science. Meaningful prediction/projection of the Arctic sea-ice conditions for the coming decades and beyond requires determining priorities for observations and model development, evaluation of the ability of climate models to reproduce the observed sea-ice behavior as a part of the broader climate system, improved attribution of the causes of Arctic sea-ice change, and improved understanding of the predictability of sea-ice conditions on seasonal through centennial timescales in the wider context of the polar climate predictability

    Anomalous blocking over Greenland preceded the 2013 extreme early melt of local sea ice

    Get PDF
    The Arctic marine environment is undergoing a transition from thick multi-year to first-year sea ice cover with coincident lengthening of the melt season. Such changes are evident in the Baffin Bay-Davis Strait-Labrador Sea (BDL) region where melt onset has occurred ~8 days decade-1 earlier from 1979-2015. A series of anomalously early events has occurred since the mid-1990s, overlapping a period of increased upper-air ridging across Greenland and the northwestern North Atlantic. We investigate an extreme early melt event observed in spring 2013 below the 1981-2010 melt climatology), with respect to preceding sub-seasonal mid-tropospheric circulation conditions as described by a daily Greenland Blocking Index (GBI). The 40-days prior to the 2013 BDL melt onset are characterized by a persistent, strong 500 hPa anticyclone over the region (GBI >+1 on >75% of days). This circulation pattern advected warm air from northeastern Canada and the northwestern Atlantic poleward onto the thin, first-year sea ice and caused melt about 50 days earlier than normal. The episodic increase in the ridging atmospheric pattern near western Greenland as in 2013, exemplified by large positive GBI values, is an important recent process impacting the atmospheric circulation over a North Atlantic cryosphere undergoing accelerated regional climate change

    Results of the first Arctic Heat Open Science Experiment

    Get PDF
    Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99 (2018): 513-520, doi:10.1175/BAMS-D-16-0323.1.Seasonally ice-covered marginal seas are among the most difficult regions in the Arctic to study. Physical constraints imposed by the variable presence of sea ice in all stages of growth and melt make the upper water column and air–sea ice interface especially challenging to observe. At the same time, the flow of solar energy through Alaska’s marginal seas is one of the most important regulators of their weather and climate, sea ice cover, and ecosystems. The deficiency of observing systems in these areas hampers forecast services in the region and is a major contributor to large uncertainties in modeling and related climate projections. The Arctic Heat Open Science Experiment strives to fill this observation gap with an array of innovative autonomous floats and other near-real-time weather and ocean sensing systems. These capabilities allow continuous monitoring of the seasonally evolving state of the Chukchi Sea, including its heat content. Data collected by this project are distributed in near–real time on project websites and on the Global Telecommunications System (GTS), with the objectives of (i) providing timely delivery of observations for use in weather and sea ice forecasts, for model, and for reanalysis applications and (ii) supporting ongoing research activities across disciplines. This research supports improved forecast services that protect and enhance the safety and economic viability of maritime and coastal community activities in Alaska. Data are free and open to all (see www.pmel.noaa.gov/arctic-heat/).This work was supported by NOAA Ocean and Atmospheric Research and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063 and by the Innovative Technology for Arctic Exploration (ITAE) program at JISAO/PMEL. Jayne, Robbins, and Ekholm were supported by ONR (N00014-12-10110)

    A Global Portrait of Counselling Psychologists’ Characteristics, Perspectives, and Professional Behaviors

    Get PDF
    Counselling psychologists in eight countries (Australia, Canada, New Zealand, South Africa, South Korea, Taiwan, the United Kingdom, and the United States) responded to survey questions that focused on their demographics as well as their professional identities, roles, settings and activities. As well, they were asked about satisfaction with the specialty and the extent to which they endorsed 10 core counselling psychology values. This article reports those results, focusing both on areas in which there were between-country similarities as well as on those for which there were differences. These data provide is a snapshot of counselling psychology globally and establish a foundation for the other articles in this special issue of the journal

    Greenland ice sheet surface mass loss: recent developments in observation and modeling

    Get PDF
    Surface processes currently dominate Greenland ice sheet (GrIS) mass loss. We review recent developments in the observation and modelling of GrIS surface mass balance (SMB), published after the July 2012 deadline for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Since IPCC AR5 our understanding of GrIS SMB has further improved, but new observational and model studies have also revealed that temporal and spatial variability of many processes are still poorly quantified and understood, e.g. bio-albedo, the formation of ice lenses and their impact on lateral meltwater transport, heterogeneous vertical meltwater transport (‘piping’), the impact of atmospheric circulation changes and mixed-phase clouds on the surface energy balance and the magnitude of turbulent heat exchange over rough ice surfaces. As a result, these processes are only schematically or not at all included in models that are currently used to assess and predict future GrIS surface mass loss

    Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability

    Get PDF
    The pace of Arctic warming is about double that at lower latitudes – a robust phenomenon known as Arctic amplification (AA)1. Many diverse climate processes and feedbacks cause AA2-7, including positive feedbacks associated with diminished sea ice6,7. However, the precise contribution of sea-ice loss to AA remains uncertain7,8. Through analyses of both observations and model simulations, we show that the contribution of sea-ice loss to wintertime AA appears dependent on the phase of the Pacific Decadal Oscillation (PDO). Our results suggest that for the same pattern and amount of sea-ice loss, consequent Arctic warming is larger during the negative PDO phase, relative to the positive phase, leading to larger reductions in the poleward gradient of tropospheric thickness and to more pronounced reductions in the upper-level westerlies. Given the oscillatory nature of the PDO, this relationship has the potential to increase skill in decadal-scale predictability of Arctic and sub-Arctic climate. Our results indicate that Arctic warming in response to the ongoing long-term sea-ice decline9,10 is greater (reduced) during periods of negative (positive) PDO phase. We speculate that the observed recent shift to the positive PDO phase, if maintained and all other factors being equal, could act to temporarily reduce the pace of wintertime Arctic warming in the near future.J.A.S. was funded by a UK Natural Environment Research Council (NERC) grants NE/J019585/1 and NE/M006123/1. J.A.F. was supported by an NSF/ARCSS grant (1304097) and NASA grant (NNX14AH896). The model simulations were performed on the ARCHER UK National Supercomputing Service. We thank the NOAA ESRL and Met Office Hadley Centre for provision of observational and reanalysis data sets. We also thank D. Ackerley for helping to diagnose the cause of model crashes, C. Deser for commenting on the manuscript prior to submission, and two anonymous reviewers for constructive criticism

    The anthropology of extraction: critical perspectives on the resource curse

    Get PDF
    Attempts to address the resource curse remain focussed on revenue management, seeking technical solutions to political problems over examinations of relations of power. In this paper, we provide a review of the contribution anthropological research has made over the past decade to understanding the dynamic interplay of social relations, economic interests and struggles over power at stake in the political economy of extraction. In doing so, we show how the constellation of subaltern and elite agency at work within processes of resource extraction is vital in order to confront the complexities, incompatibilities, and inequities in the exploitation of mineral resources
    • …
    corecore