14 research outputs found

    Failure of sucrose replacement with the non-nutritive sweetener erythritol to alter GLP-1 or PYY release or test meal size in lean or obese people.

    Get PDF
    There is considerable interest in the effect of foods containing high intensity sweeteners on satiation. However, less is known about low-calorie bulk sweeteners such as erythritol. In this randomized three-way crossover study, we studied 10 lean and 10 obese volunteers who consumed three test meals on separate occasions: (a) control sucrose meal; (b) isovolumic meal with partial replacement of sucrose by erythritol; (c) isocaloric meal which contained more erythritol but equivalent calories to the control meal. We measured gut hormone levels, hunger and satiety scores, ad libitum food intake, sucrose preference and intake after the manipulations. There was a greater post-prandial excursion in glucose and insulin levels after sucrose than after the erythritol meals. There was no difference in GLP-1/PYY levels or subsequent energy intake and sucrose preference between sucrose control and isovolumic erythritol meals. In lean (but not obese) participants, hunger decreased to a greater extent after the isocaloric erythritol meal compared to the control meal (p = 0.003) reflecting the larger volume of this meal. Replacing sucrose with erythritol leads to comparable hunger and satiety scores, GLP-1 and PYY levels, and subsequent sucrose preference and intake.Wellcome Trust, National Institute for Health Research Cambridge Biomedical Research Centre, Bernard Wolfe Health Neuroscience Fund, Swiss National Science Foundation (Grant IDs: PBLAP3-145870, P3SMP3-155318), NeuroFAST consortium, European Union's Seventh Framework Programme (FP7/ 2007e2013) Grant ID: 245009), Cargill, Sas van Gent, The NetherlandsThis is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.appet.2016.09.00

    CCK-58 elicits both satiety and satiation in rats while CCK-8 elicits only satiation

    No full text
    Reduction of food intake by exogenous cholecystokinin (CCK) has been demonstrated primarily for its short molecular form, CCK-8. Mounting evidence, however, implicates CCK-58 as a major physiologically active CCK form, with different neural and exocrine response profiles than CCK-8. In three studies, we compared meal-pattern effects of intraperitoneal injections CCK-8 vs. CCK-58 in undeprived male Sprague-Dawley rats consuming sweetened condensed milk. In study 1, rats (N=10) received CCK-8, CCK-58 (0.45, 0.9, 1.8 and 3.6 nmol/kg) or vehicle before a 4-h test-food presentation. At most doses, both CCK-8 and CCK-58 similarly reduced meal size relative to vehicle. Meal-size reduction prompted a compensatory shortening of the intermeal interval (IMI) after CCK-8, but not after CCK-58, which uniquely increased the satiety ratio (IMI/size of the preceding meal). In the second study, lick patterns were monitored after administration of 0.9 nmol/kg CCK-58, CCK-8 or vehicle. Lick cluster size, lick efficiency and interlick-interval distribution remained unaltered compared to vehicle, implying natural satiation, rather than illness, following both CCK forms. In study 3, threshold satiating doses of the two CCK forms were given at 5 and 30 min after meal termination, respectively. CCK 58, but not CCK-8 increased the intermeal interval and satiety ratio compared to vehicle. In conclusion, while CCK 58 and CCK-8 both stimulate satiation, thereby reducing meal size, CCK-58 consistently exerts a satiety effect, prolonging IMI. Given the physiological prominence of CCK-58, these results suggest that CCK's role in food intake regulation may require re-examination

    NUTRALYS® pea protein: characterization of in vitro gastric digestion and in vivo gastrointestinal peptide responses relevant to satiety

    No full text
    Background: Pea protein (from Pisum sativum) is under consideration as a sustainable, satiety-inducing food ingredient. Objective: In the current study, pea-protein-induced physiological signals relevant to satiety were characterized in vitro via gastric digestion kinetics and in vivo by monitoring post-meal gastrointestinal hormonal responses in rats. Design: Under in vitro simulated gastric conditions, the digestion of NUTRALYS® pea protein was compared to that of two dairy proteins, slow-digestible casein and fast-digestible whey. In vivo, blood glucose and gastrointestinal hormonal (insulin, ghrelin, cholecystokinin [CCK], glucagon-like peptide 1 [GLP-1], and peptide YY [PYY]) responses were monitored in nine male Wistar rats following isocaloric (11 kcal) meals containing 35 energy% of either NUTRALYS® pea protein, whey protein, or carbohydrate (non-protein). Results: In vitro, pea protein transiently aggregated into particles, whereas casein formed a more enduring protein network and whey protein remained dissolved. Pea-protein particle size ranged from 50 to 500 µm, well below the 2 mm threshold for gastric retention in humans. In vivo, pea-protein and whey-protein meals induced comparable responses for CCK, GLP-1, and PYY, that is, the anorexigenic hormones. Pea protein induced weaker initial, but equal 3-h integrated ghrelin and insulin responses than whey protein, possibly due to the slower gastric breakdown of pea protein observed in vitro. Two hours after meals, CCK levels were more elevated in the case of protein meals compared to that of non-protein meals. Conclusions: These results indicate that 1) pea protein transiently aggregates in the stomach and has an intermediately fast intestinal bioavailability in between that of whey and casein; 2) pea-protein- and dairy-protein-containing meals were comparably efficacious in triggering gastrointestinal satiety signals

    Dietary Factors Affect Food Reward and Motivation to Eat

    No full text
    The propensity to indulge in unhealthy eating and overconsumption of palatable food is a crucial determinant in the rising prevalence of obesity in today's society. The tendency to consume palatable foods in quantities that exceed energy requirements has been linked to an addiction-like process. Although the existence of 'food addiction' has not been conclusively proven, evidence points to alterations in the brain reward circuitry induced by overconsumption of palatable foods that are similar to those seen in drug addiction. The diet-induced obesity paradigm is a common procedure to replicate features of human obesity in rodents. Here we review data on the effect of various obesogenic diets (high-fat, Ensure (TM), cafeteria type, sucrose) on the extent of leptin resistance, hypothalamic-neuropeptidergic adaptations and changes in feeding behavior. We also discuss to what extent such diets and properties such as macronutrient composition, physical structure, sensory stimuli, and post-ingestive effects influence the brain-reward pathways. Understanding the interaction between individual components of diets, feeding patterns, and brain reward pathways could facilitate the design of diets that limit overconsumption and prevent weight gain. Copyright (C) 2012 S. Karger GmbH, Freibur
    corecore