66 research outputs found

    Space-borne Observations of Atmospheric Pre-Earthquake Signals in Seismically Active Areas: Case Study for Greece 2008-2009

    Get PDF
    We are conducting theoretical studies and practical validation of atm osphere/ionosphere phenomena preceding major earthquakes. Our approach is based on monitoring of two physical parameters from space: outgoi ng long-wavelength radiation (OLR) on the top of the atmosphere and e lectron and electron density variations in the ionosphere via GPS Tot al Electron Content (GPS/TEC). We retrospectively analyzed the temporal and spatial variations of OLR an GPS/TEC parameters characterizing the state of the atmosphere and ionosphere several days before four m ajor earthquakes (M>6) in Greece for 2008-2009: M6.9 of 02.12.08, M6. 2 02.20.08; M6.4 of 06.08.08 and M6.4 of 07.01.09.We found anomalous behavior before all of these events (over land and sea) over regions o f maximum stress. We expect that our analysis reveal the underlying p hysics of pre-earthquake signals associated with some of the largest earthquakes in Greece

    Validating of Atmospheric Signals Associated with some of the Major Earthquakes in Asia (2003-2009)

    Get PDF
    The recent catastrophic earthquake in Haiti (January 2010) has provided and renewed interest in the important question of the existence of precursory signals related to strong earthquakes. Latest studies (VESTO workshop in Japan 2009) have shown that there were precursory atmospheric signals observed on the ground and in space associated with several recent earthquakes. The major question, still widely debated in the scientific community is whether such signals systematically precede major earthquakes. To address this problem we have started to validate the anomalous atmospheric signals during the occurrence of large earthquakes. Our approach is based on integration analysis of several physical and environmental parameters (thermal infrared radiation, electron concentration in the ionosphere, Radon/ion activities, air temperature and seismicity) that were found to be associated with earthquakes. We performed hind-cast detection over three different regions with high seismicity Taiwan, Japan and Kamchatka for the period of 2003-2009. We are using existing thermal satellite data (Aqua and POES); in situ atmospheric data (NOAA/NCEP); and ionospheric variability data (GPS/TEC and DEMETER). The first part of this validation included 42 major earthquakes (M greater than 5.9): 10 events in Taiwan, 15 events in Japan, 15 events in Kamchatka and four most recent events for M8.0 Wenchuan earthquake (May 2008) in China and M7.9 Samoa earthquakes (Sep 2009). Our initial results suggest a systematic appearance of atmospheric anomalies near the epicentral area, 1 to 5 days prior to the largest earthquakes, that could be explained by a coupling process between the observed physical parameters, and the earthquake preparation processes

    Inter-Disciplinary Validation of Pre Earthquake Signals. Case Study for Major Earthquakes in Asia (2004-2010) and for 2011 Tohoku Earthquake

    Get PDF
    We carried out multi-sensors observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several physical and environmental parameters, which we found, associated with the earthquake processes: thermal infrared radiation, temperature and concentration of electrons in the ionosphere, radon/ion activities, and air temperature/humidity in the atmosphere. We used satellite and ground observations and interpreted them with the Lithosphere-Atmosphere- Ionosphere Coupling (LAIC) model, one of possible paradigms we study and support. We made two independent continues hind-cast investigations in Taiwan and Japan for total of 102 earthquakes (M>6) occurring from 2004-2011. We analyzed: (1) ionospheric electromagnetic radiation, plasma and energetic electron measurements from DEMETER (2) emitted long-wavelength radiation (OLR) from NOAA/AVHRR and NASA/EOS; (3) radon/ion variations (in situ data); and 4) GPS Total Electron Content (TEC) measurements collected from space and ground based observations. This joint analysis of ground and satellite data has shown that one to six (or more) days prior to the largest earthquakes there were anomalies in all of the analyzed physical observations. For the latest March 11 , 2011 Tohoku earthquake, our analysis shows again the same relationship between several independent observations characterizing the lithosphere /atmosphere coupling. On March 7th we found a rapid increase of emitted infrared radiation observed from satellite data and subsequently an anomaly developed near the epicenter. The GPS/TEC data indicated an increase and variation in electron density reaching a maximum value on March 8. Beginning from this day we confirmed an abnormal TEC variation over the epicenter in the lower ionosphere. These findings revealed the existence of atmospheric and ionospheric phenomena occurring prior to the 2011 Tohoku earthquake, which indicated new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere

    The effect of the August 21, 2017 total solar eclipse on the phase of VLF/LF signals

    Get PDF
    An experimental study of the phase and amplitude observations of sub‐ionospheric very low and low frequency signals is performed to analyse the response of the lower ionosphere during the August 21, 2017 total solar eclipse in the United States of America. Three different sub‐ionospheric wave paths are investigated. The length of the paths varies from 2200 to 6400 km and the signal frequencies are 21.4 kHz, 25.2 kHz and 40.75 kHz. The two paths cross the region of the total eclipse and the third path is in the region of 40‐60% of obscuration. None of the signals reveal any noticeable amplitude changes during the eclipse while negative phase anomalies (from ‐33° to ‐95°) are detected for all three paths. It is shown that the effective reflection height of the ionosphere in low and middle latitudes is increased by about 3‐5 km during the eclipse. Estimation of the electron density change in the lower ionosphere caused by the eclipse, using linear recombination law, shows that the average decrease is by 2.1 to 4.5 times

    From Multi-Sensors Observations Towards Cross-Disciplinary Study of Pre-Earthquake Signals. What have We Learned from the Tohoku Earthquake?

    Get PDF
    The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake event

    Multi-Parameter Observation and Detection of Pre-Earthquake Signals in Seismically Active Areas

    Get PDF
    The recent large earthquakes (M9.0 Tohoku, 03/2011; M7.0 Haiti, 01/2010; M6.7 L Aquila, 04/2008; and M7.9 Wenchuan 05/2008) have renewed interest in pre-anomalous seismic signals associated with them. Recent workshops (DEMETER 2006, 2011 and VESTO 2009 ) have shown that there were precursory atmospheric /ionospheric signals observed in space prior to these events. Our initial results indicate that no single pre-earthquake observation (seismic, magnetic field, electric field, thermal infrared [TIR], or GPS/TEC) can provide a consistent and successful global scale early warning. This is most likely due to complexity and chaotic nature of earthquakes and the limitation in existing ground (temporal/spatial) and global satellite observations. In this study we analyze preseismic temporal and spatial variations (gas/radon counting rate, atmospheric temperature and humidity change, long-wave radiation transitions and ionospheric electron density/plasma variations) which we propose occur before the onset of major earthquakes:. We propose an Integrated Space -- Terrestrial Framework (ISTF), as a different approach for revealing pre-earthquake phenomena in seismically active areas. ISTF is a sensor web of a coordinated observation infrastructure employing multiple sensors that are distributed on one or more platforms; data from satellite sensors (Terra, Aqua, POES, DEMETER and others) and ground observations, e.g., Global Positioning System, Total Electron Content (GPS/TEC). As a theoretical guide we use the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model to explain the generation of multiple earthquake precursors. Using our methodology, we evaluated retrospectively the signals preceding the most devastated earthquakes during 2005-2011. We observed a correlation between both atmospheric and ionospheric anomalies preceding most of these earthquakes. The second phase of our validation include systematic retrospective analysis for more than 100 major earthquakes (M>5.9) in Taiwan and Japan. We have found anomalous behavior before all of these events with no false negatives. Calculated false alarm ratio for the for the same month over the entire period of analysis (2003-2009) is less than 10% and was d as the earthquakes. The commonalities in detecting atmospheric/ionospheric anomalies show that they may exist over both land and sea in regions of maximum stress (i.e., along plate boundaries) Our results indicate that the ISTF model could provide a capability to observe pre-earthquake atmospheric/ionospheric signals by combining this information into a common framework

    Group index dispersion of holey fibres measured by a white-light spectral interferometric technique

    Get PDF
    We present a new white-light interferometric technique to measure the group index of holey fibres over a wide wavelength range. The technique utilizes an unbalanced Mach–Zehnder interferometer with a fibre under test of known length placed in one of the interferometer arms and the other arm with adjustable path length. In a first step, the differential group index of the fibre is measured over a wide wavelength range. In a second step, the fibre is replaced by the reference sample of known thickness and group dispersion to determine precisely the group index of the fibre at one specific wavelength. The group index as a function of wavelength is measured for two different holey fibres, one made of pure silica glass and the other made of SK222 glass. For both fibres, the wavelength dependence of the group index of the outer cladding and modes supported by the fibre is measured
    corecore