41 research outputs found

    Large Scale Screening of Low Cost Ferritic Steel Designs For Advanced Ultra Supercritical Boiler Using First Principles Methods

    Get PDF
    Advanced Ultra Supercritical Boiler (AUSC) requires materials that can operate in corrosive environment at temperature and pressure as high as 760°C (or 1400°F) and 5000psi, respectively, while at the same time maintain good ductility at low temperature. We develop automated simulation software tools to enable fast large scale screening studies of candidate designs. While direct evaluation of creep rupture strength and ductility are currently not feasible, properties such as energy, elastic constants, surface energy, interface energy, and stack fault energy can be used to assess their relative ductility and creeping strength. We implemented software to automate the complex calculations to minimize human inputs in the tedious screening studies which involve model structures generation, settings for first principles calculations, results analysis and reporting. The software developed in the project and library of computed mechanical properties of phases found in ferritic steels, many are complex solid solutions estimated for the first time, will certainly help the development of low cost ferritic steel for AUSC

    Computational Studies of Physical Properties of Boron Carbide

    Get PDF
    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package

    Elastic and electronic properties of Ti2Al(CxN1−x) solid solutions

    Get PDF
    The elastic coefficients and mechanical properties (bulk modulus, shear modulus, Young\u27s modulus and Poisson\u27s ratio) of Ti2Al(CxN1−x) continuous solid solutions for x from 0 to 1 are calculated using ab initio DFT methods on 4×4×1 supercell models. It is shown that the properties of these solid solutions do not vary linearly with x. Although the lattice constant c is almost constant for x≤0.5, a increases linearly. For x\u3e0.5, c starts to increase with x while the rate of increase in a slows down. For x between 0.5 and 0.85, the elastic coefficients and the mechanical parameters show interesting dependence on x and crossovers, signifying the complex interplay in the structure and properties in Ti2Al(CxN1−x) solid solutions. The nonlinear variations in mechanical properties are explained in terms of subtle difference in the electronic structure and bonding between nitrides and carbides in complex MAX phase compounds

    Ab initio tensile experiment on a model of an intergranular glassy film in β-Si3N4 with prismatic surfaces

    Get PDF
    This is the published version. Copyright 2009 American Institute of PhysicsWe report the results of a large-scale ab initio simulation of an intergranular glassy film (IGF) model in β-Si3N4. It is shown that the stress-strain behavior under uniaxial load in the model with prismatic surfaces and few defective bonds is very different from an earlier IGF model with basal planes. The results are explained by the fundamental electronic structure of the model

    Ab initio tensile experiment on a model of an intergranular glassy film in β-Si3N4 with prismatic surfaces

    Get PDF
    We report the results of a large-scale ab initio simulation of an intergranular glassy film (IGF) model in β-Si3N4. It is shown that the stress-strain behavior under uniaxial load in the model with prismatic surfaces and few defective bonds is very different from an earlier IGF model with basal planes. The results are explained by the fundamental electronic structure of the model. This work is supported by the U.S. Department of Energy under Grant No. DE-FG02-84DR45170. This research used the resources of NERSC supported by the Office of Science of DOE under Contract No. DE-AC03-76SF00098

    Theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-Si3N4

    Get PDF
    This is the published version. Copyright © 2010 The American Physical SocietyMicrostructures such as intergranular glassy films (IGFs) are ubiquitous in many structural ceramics. They control many of the important physical properties of polycrystalline ceramics and can be influenced during processing to modify the performance of devices that contain them. In recent years, there has been intense research, both experimentally and computationally, on the structure and properties of IGFs. Unlike grain boundaries or dislocations with well-defined crystalline planes, the atomic scale structure of IGFs, their fundamental electronic interactions, and their bonding characteristics are far more complicated and not well known. In this paper, we present the results of theoretical simulations using ab initio methods on an IGF model in β-Si3N4 with prismatic crystalline planes. The 907-atom model has a dimension of 14.533 Å×15.225 Å×47.420 Å. The IGF layer is perpendicular to the z axis, 16.4 Å wide, and contains 72 Si, 32 N, and 124 O atoms. Based on this model, the mechanical and elastic properties, the electronic structure, the interatomic bonding, the localization of defective states, the distribution of electrostatic potential, and the optical dielectric function are evaluated and compared with crystalline β-Si3N4. We have also performed a theoretical tensile experiment on this model by incrementally extending the structure in the direction perpendicular to the IGF plane until the model fully separated. It is shown that fracture occurs at a strain of 9.42% with a maximum stress of 13.9 GPa. The fractured segments show plastic behavior and the formation of surfacial films on the β-Si3N4. These results are very different from those of a previously studied basal plane model [J. Chen et al., Phys. Rev. Lett. 95, 256103 (2005)] and add insights to the structure and behavior of IGFs in polycrystalline ceramics. The implications of these results and the need for further investigations are discussed

    Complex Nonlinear Deformation of Nanometer Intergranular Glassy Films in β−Si3N4

    Get PDF
    This is the published version. Copyright 2005 American Physical SocietyThe mechanical properties of a model of Y-doped intergranular glassy film in silicon nitride ceramics are studied by large-scale ab initio modeling. By linking directly to its electronic structure, it is shown that this microstructure has a complex nonlinear deformation under stress and Y doping significantly enhances the mechanical properties. The calculation of the electrostatic potential across the film supports the space charge model in ceramic microstructures

    Understanding the Factors That Control theFormation and Morphology of Zn5(OH)8(NO3)2â‹…2H2Othrough Hydrothermal Route

    Get PDF
    The influence of the choice of ethanol-water volume ratio, concentration of zinc salt, and ZnO buffer layer on the formation andmorphology of Zn5(OH)8(NO3)2⋅2H2O grown from the hydrothermal route was systematically discussed. Experimental resultssuggested that Zn5(OH)8(NO3)2⋅2H2O rectangle sheets and Zn5(OH)8(NO3)2⋅2H2O upright-standing plates were obtained bylimiting ethanol-water volume ratio. The concentration of zinc salt was crucial for getting phase-pure Zn5(OH)8(NO3)2⋅2H2O. Thepresence of ZnO buffer layer could lead to the that chemical composition of product grown on the substrate was totally differentfrom the product grown in the solution. Possible formation mechanism of Zn5(OH)8(NO3)2⋅2H2O was also studied. Ramanspectrum of Zn5(OH)8(NO3)2⋅2H2O displays a complex behavior with four modes, which can be assigned to the vibrationalmodes of Zn–H–O, Zn–O, H2O-nitrate, and nitrate. Porously ZnO rectangle sheets were obtained by thermal treatment ofZn5(OH)8(NO3)2⋅2H2O rectangle sheets

    Thermodynamics of concentrated solid solution alloys

    Get PDF
    This paper reviews the three main approaches for predicting the formation of concentrated solid solution alloys (CSSA) and for modeling their thermodynamic properties, in particular, utilizing the methodologies of empirical thermo-physical parameters, CALPHAD method, and first-principles calculations combined with hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulations. In order to speed up CSSA development, a variety of empirical parameters based on Hume-Rothery rules have been developed. Herein, these parameters have been systematically and critically evaluated for their efficiency in predicting solid solution formation. The phase stability of representative CSSA systems is then illustrated from the perspectives of phase diagrams and nucleation driving force plots of the σ phase using CALPHAD method. The temperature-dependent total entropies of the FCC, BCC, HCP, and σ phases in equimolar compositions of various systems are presented next, followed by the thermodynamic properties of mixing of the BCC phase in Al-containing and Ti-containing refractory metal systems. First-principles calculations on model FCC, BCC and HCP CSSA reveal the presence of both positive and negative vibrational entropies of mixing, while the calculated electronic entropies of mixing are negligible. Temperature dependent configurational entropy is determined from the atomic structures obtained from MC/MD simulations. Current status and challenges in using these methodologies as they pertain to thermodynamic property analysis and CSSA design are discussed

    Genome Structure of Bacillus cereus tsu1 and Genes Involved in Cellulose Degradation and Poly-3-Hydroxybutyrate Synthesis

    Get PDF
    In previous work, we reported on the isolation and genome sequence analysis of Bacillus cereus strain tsu1 NCBI accession number JPYN00000000. The 36 scaffolds in the assembled tsu1 genome were all aligned with B. cereus B4264 genome with variations. Genes encoding for xylanase and cellulase and the cluster of genes in the poly-3-hydroxybutyrate (PHB) biosynthesis pathway were identified in tsu1 genome. The PHB accumulation in B. cereus tsu1 was initially identified using Sudan Black staining and then confirmed using high-performance liquid chromatography. Physical properties of these PHB extracts, when analyzed with Raman spectra and Fourier transform infrared spectroscopy, were found to be comparable to the standard compound. The five PHB genes in tsu1 (phaA, phaB, phaR, phaC, and phaP) were cloned and expressed with TOPO cloning, and the recombinant proteins were validated using peptide mapping of in-gel trypsin digestion followed by mass spectrometry analysis. The recombinant E. coli BL21 (DE3) (over)expressing phaC was found to accumulate PHB particles. The cellulolytic activity of tsu1 was detected using carboxymethylcellulose (CMC) plate Congo red assay and the shift towards low-molecular size forms of CMC revealed by gel permeation chromatography in CMC liquid culture and the identification of a cellulase in the secreted proteome
    corecore