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We report the results of a large-scale ab initio simulation of an intergranular glassy film �IGF� model
in �-Si3N4. It is shown that the stress-strain behavior under uniaxial load in the model with
prismatic surfaces and few defective bonds is very different from an earlier IGF model with basal
planes. The results are explained by the fundamental electronic structure of the model. © 2009
American Institute of Physics. �DOI: 10.1063/1.3079800�

It is now well recognized that the mechanical properties
of polycrystalline ceramics are controlled by its microstruc-
tures such as the nanometer thick intergranular glassy films
�IGFs�. The presence and the physical properties of IGFs in a
number of different ceramic materials have been a subject of
many experimental and theoretical investigations.1 However,
such investigations are extremely challenging because of the
complexity of the IGF structure. Experimentally, it is diffi-
cult to fully characterize the samples and carry out measure-
ments aimed specifically at a particular aspect of the IGF.
Theoretically, the ability to reveal the complicated structure-
property relationship is hindered by the absence of well con-
structed IGF models and the accuracy limitations of various
theories. In recent years, there has been considerable devel-
opment in using ab initio methods based on density func-
tional theory �DFT� to simulate the mechanical properties of
ceramic crystals.2 We have demonstrated that such an ap-
proach can be applied to IGF models in �-Si3N4 which have
yielded a wealth of previously unknown information.3–6 The
model we previously constructed has 798 atoms sandwiched
between the basal planes of �-Si3N4 with an IGF region
consisting of Si, O, and N ions and a width of about 1 nm
�Fig. 1�a�, basal model�. Theoretical tensile experiments
were carried out on both the pure �no rare earth �RE� addi-
tives� and Y-doped models.4 It was concluded that the behav-
ior of the mechanical deformation is highly nonlinear in clear
violation of the Cauchy Born theory routinely accepted by
the engineering community. It was also shown that Y-doping
enhances the mechanical properties of the IGF in the form of
increased maximum strain and stress as compared to the un-
doped model consistent with experimental observations.7

In this letter, we report the results of a theoretical tensile
experiment on a new IGF model with prismatic planes in-
stead of basal planes. This model �prismatic model� is more
realistic since most IGFs observed in polycrystalline �-Si3N4
have prismatic planes.8 This 907-atom model with periodic
boundary conditions �see Fig. 1�b�� was constructed in a
similar manner as in the basal model and was fully relaxed
using the Vienna ab initio simulation package �VASP�.9 The
IGF region �defined as the region roughly between the crys-
talline Si layers� is about 1.7 nm wide and contains 12 N ions

in the interior of IGF. The equilibrium cell dimension is
14.554�15.225�47.420 Å3 with the z-axis perpendicular
to the IGF layer. This is a fairly ideal model with a few
defective structures in contrast to the basal model. At the
crystal/glass interface, the terminal Si �N� atoms from the
crystal layer form rather normal bonds with O �Si� in the
glassy region in almost equal proportions. Such a near-
perfect interfacial structure has been observed in high reso-
lution electron microscopy images in some RE-doped
samples.10–12 All Si–O and Si–N bond distances are very
reasonable with a few bonds as large as 1.87 Å. The IGF
region in the prismatic model contains 72 Si, 124 O, and
32 N ions �including the terminal N from the crystal part�.
Among them, there are only three threefold and one fivefold
Si atoms, eight twofold N atoms, and two threefold O atoms.
Hence the glassy region in the present model has a fairly low
defect density, assuming the ideal bonding to be fourfold for
Si, threefold for N, and twofold for O.

The theoretical tensile experiment was carried out by
systematic extension of the model in the z direction in small
steps with the x-y dimensions kept fixed. During each exten-
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FIG. 1. �Color online� Comparison of the two IGF models in �-Si3N4: �a�
the 798 atom basal model and �b� the 907-atom prismatic model.
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sion step, the model is fully relaxed using VASP until the
desired convergence was reached. We used the ultrasoft gen-
eralized gradient approximation potential with 1 k point and
an energy cutoff of 400 eV. The electronic energy and force
convergences were set at 0.001 and 0.01 eV/Å, respectively.
The extension steps were repeated until the model was fully
fractured and well separated. The total energy, the stress, and
the atomic configuration at each step were registered at 22
data points. Figure 2 shows the stress versus strain data for
the three Cartesian components �zz, �xx, and �yy from the
tensile experiment. Note that the strain �s� is defined as the
percentage of extension of the entire supercell in the z direc-
tion. The zz stress component is larger than the xx and yy
components since the load is applied in the z direction and
the x-y dimension is kept fixed. This corresponds to the so-
called “uniaxial extension” which induces a triaxial stress
state.2 The stress-strain response has interesting features in
both pre- and postfailure regions. The prepeak response is
nonlinear; however, the failure is considerably more abrupt
than that reported for perfect crystals.13 The maximum stress
of 13.6 GPa for �zz occurs at the strain of 9.4%. In contrast,
peak stress for perfect crystals has been reported to be as
high as 75 GPa at strains �25%. Beyond the peak at
s=0.094, �zz drops rapidly but not to zero as would be ex-
pected from fracture mechanics of brittle materials. Even at
s=0.24, where the IGF model is fully fractured, there re-
mains a sizable stress of roughly 1/3 of the maximum value.
It is observed that the stress at s greater than 0.20 actually
increases slightly when the film is already broken. This is
most likely due to the extremely slow convergence in the
relaxation process which would require far more steps when
the vacuum region is created after the fracture of IGF. Addi-
tional work is necessary to confirm this point.

Figure 3 shows the atomistic pictures of the IGF model
at five different strains of s=0.0, 0.39, 0.094, 0.148, and
0.24, respectively. It is clear that, initially, the applied strain
simply elongates the Si–O and Si–N bonds within the IGF.
Near the maximum stress, some bonds start to break and the
atoms with the breaking bonds recoil back in the opposite
direction. At the largest strain simulated �s=0.24�, the two

parts of the model were clearly separated and the model re-
sembles two �-Si3N4 �01-10� surfaces coated with glassy
films. The fracture occurs at the interior of the IGF, presum-
ably at the location with lower bond density, not at the inter-
face between the IGF and the crystal. This behavior is very
different from the earlier study on the basal model where the
fracture occurs at the IGF crystal interface and the stress
drops to zero after fracture.4,6

The electronic structure of the prismatic IGF model un-
der strain is studied by the first-principles orthogonalized
linear combination of the atomic orbitals �OLCAO�
method.14 The DFT-based OLCAO method with atomic or-
bitals used in the basis expansion is highly accurate and ef-
ficient for large complex structures. In the present calcula-
tion, a full basis set is used15 and the full secular equation of
dimension 9111�9111 is diagonalized to obtain all energy
eigenvalues and wave functions. Figure 4 shows the calcu-
lated density of states �DOS� of the model at five different
strains. At zero strain, a sizable gap of about 3.8 eV is evi-
dent. There exist a few defective states in the gap near the
valence band �VB� and the conduction band �CB� edges.
These defect states can be traced to the few under- or over-
coordinated atoms discussed above. As the strain is in-
creased, more defective states move toward the center of the
gap, signaling an increase in defects due to bond distortion or
bond breaking. After fracture, these defective states move
back to the proximity of the VB and CB band edges as sur-
face states. A surprising fact is that the overall DOS features
vary little with strain except for the location of the defective
states.
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FIG. 2. �Color online� Stress vs strain of the prismatic model under uniaxial
extension in the z-direction. Each data point is collected after full ab initio
relaxation using VASP at a given strain. The xx and yy components of the
strain are also shown.
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FIG. 3. �Color online� Atomic structures of the prismatic model under
strains of �a� 0.00, �b� 0.039, �c� 0.094, �d� 0.148, and �e� 0.239.
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One of the special advantages of the OLCAO method is
that quantitative information on the bond strength can be
obtained using the Mulliken scheme16 and a separate mini-
mal basis calculation. The bond order �BO� between a pair of
atoms is defined as

��� = �
n,occ

�
i,j

Ci�
�nCj�

n Si�,j�

where i and j labels are the orbital quantum numbers and n is
the band index. Si�,j� is the overlap matrix and Cj�

n is the
eigenvector of the wave function from the minimal basis
calculations. The BO values depend mostly on the inter-
atomic separations but can also be affected by the presence
of other nearby atoms �bond angles�. The strength of the IGF
depends on the strength of the bonds and the number of
bonds present. The change in the bond order density �BOD�
in the IGF model as a function of strain is shown in Fig. 4�b�.
We define the BOD as the totality of the BOs of all bonds
crossing a plane of small thickness perpendicular to the z
axis. As can be seen, in the crystalline region, the distribution
of BOD shows peaks and valleys as it passes through suc-
cessive crystalline planes in �-Si3N4. In the IGF region, the
BOD is much lower than the averages in the crystalline re-
gion, reflecting the weaker Si–O bonds in the IGF compared
to the highly covalent Si–N bonds in the crystal. As the strain
is increased, the BOD decreases due to the longer and there-
fore weaker bonds and eventually the breaking of some of
these bonds. The sizable stress remaining in the IGF model
after it reaches the maximum can be accounted for by the
remaining stress in the surfacial films due to the inherent
disorder associated with the glassy nature of the film, evi-
denced by the remaining peaks and valleys in the BOD dia-
gram near crystal surfaces.

The above results based on theoretical tensile experi-
ments show complicated deformation and failure mecha-
nisms in an IGF model in �-Si3N4 with prismatic surfaces.

The model is sufficiently large with a few defective struc-
tures. This is in contrast to an earlier study on the basal
model which shows very different fracture behavior and fail-
ure mechanism.4–6 This can be attributed to the fact that the
basal IGF model has more defective atoms near the interface.
It also shows that the bonding of atoms in the vicinity of the
crystalline and IGF interfaces depends critically on the crys-
tal orientations. Such differences which originate from the
atomic scale structure and bonding of the IGF microstruc-
tures in ceramics have not been investigated so far. In the
present work, the deformation behavior is accompanied by
parallel calculation of the electronic structure and BODs.
Such analysis is more accurate than those based purely on
geometric configurations from classical simulations. Our re-
sults do reveal some surprises such as the similarities in the
DOS for models under different strains and the formation of
surfacial films after fracture. These facts are consistent with
the belief that the formation of surfacial films and their ac-
companying thermodynamics is similar to the IGF forma-
tions in bulk polycrystalline materials.1 Further results with
more detailed descriptions will be reported in future publica-
tions.
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FIG. 4. �a� Calculated DOS and �b� BOD for the prismatic model under
various uniaxial strains. The zero of the energy is set at the topmost occu-
pied state.
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