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Abstract  

 

The elastic coefficients and mechanical properties (bulk modulus, shear modulus, Young’s 

modulus and Poisson’s ratio) of Ti2Al(CxN1-x) continuous solid solutions for x from 0 to 1 are 

calculated using ab initio DFT methods on 4x4x1 supercell models. It is shown that the 

properties of these solid solutions do not vary linearly with x.  Although the lattice constant c is 

almost constant for x ≤ 0.5, a increases linearly. For x > 0.5, c starts to increase with x while the 

rate of increase in a slows down. For x between 0.5 and 0.85, the elastic coefficients and the 

mechanical parameters show interesting dependence on x and crossovers, signifying the complex 

interplay in the structure and properties in Ti2Al(CxN1-x) solid solutions. The nonlinear variations 

in mechanical properties are explained in terms of subtle difference in the electronic structure 

and bonding between nitrides and carbides in complex MAX phase compounds.   

Key words: MAX phases, Solid Solutions,Ti2Al(C1-xNx), Mechanical properties, Electronic 

Structure.  

 

1. Introduction 

 

The transition metal ternary compounds Mn+1AXn or MAX phases with layered structures where 

X is either carbon or nitrogen has attracted great deal of attention in recent decades due to many 

of their fascinating properties and wide range of potential applications. Up to now, only about 70 

of these phases are confirmed and synthesized [1]. Although the majority of these confirmed 

phases are 211 carbides with layer index n = 1, MAX phases with n≥2 also exist. Among the 

211 phases, the most well-recognized phase is with M = Ti, A = Al and X = C, or Ti2AlC. It has 

also been demonstrated that the formation of composite phases and solid solutions in MAX 

phases between different “M” elements, “A” elements and C and N are possible and well-

documented. Such possibilities have greatly extended the range of compositions and in fine-

turning the properties of MAX compounds. [1].  

 

In spite of many papers published on the synthesis, properties and electronic structure 

calculations on MAX phases within last decades, one of the fundamental questions that still have 

eluded a clear answer is in what way the MAX carbides differ from nitrides, and why there has 

been far less nitrides synthesized in the laboratories than carbides?   

© 2015. This manuscript version is made available under the Elsevier user license  

http://www.elsevier.com/open-access/userlicense/1.0/ 

http://ees.elsevier.com/jecs/viewRCResults.aspx?pdf=1&docID=12723&rev=1&fileID=495005&msid={19E5621C-8A35-4C6F-8A7F-9E070C44B058}
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Very recently, using a genomic approach, we presented a large data base on the elastic properties 

and electronic structure of 665 prescreened MAX phases [2]. Extensive trends, correlations in 

the mechanical and elastic properties, the electronic structure and bonding and trends in the 

progression of layered index n were explored and many noticeable differences between MAX 

carbides and nitrides were identified. We have also used this high quality data base to test and 

validate the data mining approach widely employed in materials informatics community [3]. 

However, no solid solution phases were included in our study which could significantly enlarge 

the data base for MAX phases. To our knowledge, there has been no accurate calculations on the 

MAX solid solutions mainly because such calculations will require large amount of 

computational resources. The only work that have been attempted appears to be a simplified 

calculation using quasi-harmonic Debye model for Ti2AlC0.5N0.5 [4]. Solid solutions are no 

longer crystalline phases with well-defined long range order. They are essentially a class of 

disordered solids with random site substitutions. A sufficiently large number of supercells must 

be used to describe the structure and property variations with composition x.  

 

Here, we report a detailed investigation on one of the most important MAX solid solution 

phases, Ti2Al(CxN1-x). Ti2AlC and Ti2AlN are both well studied MAX phases and the transition 

from Ti2AlC to Ti2AlN or vice versa will be highly interesting because it may shed light on the 

source of the difference between MAX carbides and MAX nitrides. Their mechanical properties 

can be related to their parent mono-carbides and nitride TiC and TiN. There have also been 

speculation that solid solution phase can be a means to strengthen the MAX phases and alter its 

physical properties [1]. Finally, there are considerable amount of experimental studies on the 

Ti2Al(C-xN1-x) solid solution albeit with limited x and relatively poor sample characterization [5-

10]. Thus our ab initio calculations on the Ti2Al(CxN1-x) solid solution is a timely effort to link 

computation to experimental efforts and in understanding some of the fundamental issues in 

MAX phases. More recently, MAX phase solid solutions of M site [11-15], A site [16, 17] and X 

site [18, 19] have been investigated by several research groups. Most of them focusing on the 

synthesis of the solid solution phases in the form of thin films, and few with large scale 

calculations. In particular, Yu and co-works [18] demonstrated that Ti2Al(CxN1-x).solid solution 

can be synthesized in the entire composition range for x from 0 -1.0.  

 

In this paper, we present the results of calculation on the elastic and mechanical properties of the 

Ti2Al(CxN1-x) solid solutions using supercell models and detail their variation as a function of 

composition x in terms of the electronic structure and bonding as x changes. We briefly describe 

the supercell and computational methods employed in the next sections. The results for the solid 

solution are presented and discussed in Sections III. We end the paper with some conclusions.  

 

2. Method and Model Construction  

 

2.1 Supercell models  

 

All calculations on the MAX Ti2Al(CxN1-x) solid solutions were done a on 4 x 4 x 1 supercells 

each containing 128 atoms. Since MAX phases are elongated crystals with lattice parameter c 

much larger than a, the 4 x 4 x 1 supercell have lattice constant a = b close to c. (see Fig. 1).  We 

constructed 17 models of different x including the end members Ti2AlN (x = 0) and Ti2AlC (x = 
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1) in the increment of ∆x = 1/16. For each x (except the end members), 10 initial models with 

random distribution of C and N were constructed. These 10 models are then fully relaxed without 

constraints using the Vienna Ab initio Simulation Package (VASP) (see below). The model with 

the lowest total energy for each x is designated as the representative model structure for 

Ti2Al(CxN1-x) solid solution at that x. The final representative models are further relaxed with 

higher precision as required for the elastic, mechanical and electronic structure calculations. To 

demonstrate that the sampling of 10 models for each x is more than adequate, we presented the 

mean energy, the lowest total energy, and standard deviation (σ) in Table 1.  The standard 

deviation (σ) is also plotted against x and is shown in Fig. 2.  As expected, σ is larger for x 
around 0.5 but is less than 0.20 eV which is extremely small (less than 0.02%), considering 
the mean values of the supercell total energy for x = 0.062, x = 0.50 and x = 0.938 are -
1029.2296 eV, -1016.0403 eV and -1000.8834 eV respectively. 

 

2.2 Methods used for relaxation and properties calculations  

 

VASP[11] and OLCAO [12, 13] codes, both based density functional theory (DFT) based 

methods,  are the primary tools used for the present calculations. VASP is used for relaxation of 

supercell models for each x and also for elastic properties calculations whereas OLCAO is 

exclusively used for electronic structure, bonding and optical conductivity calculations. In 

VASP, we used  projector augmented wave (PAW)[14, 15] method and adopted the GGA PBE 

potential   for exchange correlation functional as implemented in VASP[16, 17]. A high energy 

cutoff of 600 eV is used to ensure sufficient precision. We also used a rather stringent 

convergence criteria of 1.0 x 10
-8

 eV for electronic relaxation and 1.0 x 10
-6

 eV/Ǻ for ionic force 

convergence. Since MAX phases are metals, a large Γ-centered, k-points mesh (3 × 3 × 3) for 

the supercell along with Methfessel-Paxton scheme for smearing are used to ensure high 

accuracy. Once the structures were fully relaxed with minimum internal stresses, we used the 

strain-stress analysis approach for elastic properties calculation[18, 19]. The stress tensor 

    under a set of applied strain     are extracted and the elastic stiffness constants (   ) are 

obtained by solving tensorial equation .ij ij j

ij

C   From the calculated    , we obtain the bulk 

mechanical properties (bulk modulus K, shear modulus G, Young’s modulus E and Poisson’s 

ratio (η) using the well-tested Voight-Reuss-Hill (VRH) approximation for polycrystalline 

aggregates[20-22]. 

 

In OLCAO method [12, 13], we use atomic orbitals as the basis expansion and it is very efficient 

for large number of calculations with complex structures. Two most useful quantities in the 

OLCAO calculations are the effective charge Q* and bond order values between pairs of atoms 

using minimal basis given by the two equations below based on Mulliken scheme[23].  

 

  
          

     
                        (1)  

          

      (2) 

 

*

,

, ,

n n

i j i j

n occ i j

C C S      
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where i, j label the orbital quantum number and n the band index, *

jC  are the eigenvector 

coefficients of the wave function and Siα,jβ is the overlap matrix between atoms α and β.  

We have also calculated the optical conductivity σ1 = ε2(ω)ω/4π for the Ti2Al(CxN1-x) solid 

solution from the resulting wave functions according to [21]:  

 

   ω   
  

    
                                     

 
                                             

(3) 

 

The combination of VASP and OLCAO method in studying properties of different types of 

complex materials systems including metal[2, 24, 25], ceramics[26-29], and polymeric 

biomolecules[30, 31] and liquid and amorphous solids[32, 33] have been well demonstrated.  

 

3. Results and Discussion   

 

3.1 Elastic coefficient and mechanical parameters.  

 

The calculated results for the elastic coefficients and mechanical parameters for Ti2Al(CxN1-x) 

solid solution  are listed in Table 2. Also included are the values of G/K ratio, aka Pugh moduli 

ratio. The results for the end members Ti2AlN and Ti2AlC agree with the experimental data and 

other calculations using unit cells. For example, the calculated bulk moduli of 160.67 GPa and 

140.47 GPa for Ti2AlN and Ti2AlC are similar to our earlier calculations using unit cell and 

slightly lesser convergence criteria with values of 160.5 GPa and 139.7 GPa respectively[25]. 

The calculated elastic constants and other parameters agree quite well with other existing 

calculations[34, 35] and measured values [36, 37]. Before we discuss these results, we first 

present the variations in the supercell lattice constants and cell volume as a function of x which 

are shown in Fig. 3 (a) and (b) respectively.  At x = 0.5, our calculated lattice constants of c and 

a are 13.62 Å and 3.038 Å respectively which are in excellent agreement with the measured 

values of 13.610 Å and 3.023 Å respectively[7]. For x ≤ 0.5, a increases linearly and c is almost 

constant. However, for x > 0.5, c starts to increase rather rapidly while the rate of increase in a 

shows marked slowing down. Obviously, there is a clear change in the lattice constants of the 

solid solution when the nitrogen content is below 50%.  The supercell cell volume increases 

steadily as a function of x with its rate of increase slightly increased for x above 0.5.    

 

Fig. 4 shows the variations of the elastic coefficients Cij as a function of x. The C11 is always 

larger than C33 for all x showing the elastic anisotropy in the solid solution is maintained. 

However, it can be observed that C11 shows a shallow minimum at x = 0.56 and C33 flattens out 

after x = 0.60 and then decreases, a behavior closely related to the change in the variations of 

lattice constants a and c above x = 0.5.    

 

The shear elastic constants (C44, C66 and C12, C13) show more complex and interesting variations 

with x than the axial elastic coefficients C11 and C33. The C44 and C66 are close to each other and 

much larger than the C13 and C12. C44 is slightly larger than C66 on the lower side of x but they 

cross over at x ~ 0.65 after which C66 remains flat whereas C44 continue to decrease. C13 is 

considerably larger than C12 at low x but the crossover occurs at x = 0.815 above which they are 

very close to each other. The complex behavior of Cij in Ti2Al(CxN1-x) with respect to x is 
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astonishing without even considering other factors such as sub-stoichiometry, presence of 

vacancies and porosities which are common in MAX solid solutions samples.   

 

In Fig. 5(a), we display the variations of bulk modulus K, Shear modulus G and Young’s 

modulus E as a function of x in Ti2Al(CxN1-x) solid solution. Since these moduli are derived from 

the Cij values using VRH approximation, their variations with x will also be reflected in the plot 

but in a more averaged way. As expected, E is larger than K, and K is larger than G in that order. 

However, their variation patterns with x are not the same. They all show some marked transition 

region in the range roughly from x = 0.4 to x = 0.8. For example, the bulk modulus K shows it 

linearly decreases for x up to 0.5 whereas the shear modulus G appears to be constant for x < 0.3 

and decreases from x between 0.3 and 0.6 and then stays roughly constant again for x above 0.6. 

The Young’s modulus decreases with x in a nonlinear pattern.   

 

The Poisson’s ratio η of a materials represent an overall matric for the materials mechanical 

properties. The G/K ratio is inversely related to η. Their variation with x is plotted in Fig. 5 (b). 
As can be expected, the variation with x is somewhat linear for x < 0.5 and x > 0.75. In 
between, where the subtle changes can occur as described above in the elastic coefficients 
and mechanical parameters, so are the Poisson’s ratio and the G/K ratio.  It has been 

generally accepted that for a pure and defect-free crystals, a material with low Poisson’s ratio η 

(or high G/K ratio) tends to be more brittle and those with higher η will be less brittle. The 

calculated values for Ti2Al(CxN1-x) solid solution follow this trend in transforming from a 

relatively ductile nitride phase in Ti2AlN to a more brittle phase Ti2AlC.  Fig. 5 also shows this 

trend in G/K as well with a transition crossover of the data at roughly x = 0.4 since G/K is 

inversely correlated with Poisson’s ratio η  the more conventional parameter.  

 

3.2 Electronic structure, and bonding and optical conductivity  

 

We have also calculated the electronic structure and bonding in Ti2Al(CxN1-x) solid solution for 

each x using the OLCAO method in the hope that they might shed some light on the subtle 

variations in their elastic and mechanical properties shown above. Fig. 6 shows the calculated 

total density of states (DOS) for the 17 supercell models from x = 0 to x = 1. The zero of the 

energy in Fig. 6 defines the Fermi energy which lies in the region of relatively low DOS, 

indicating to certain extent that these MAX phases should be stable from electronic structure 

perspective using free electron model[38].  It can also be seen that the peaks in the DOS shifts as 

x increases. For example, the lowest peak at - 15.0 eV is the N-2s peak for x = 0 (Ti2AlN) and 

the lowest peak for x = 1 (Ti2AlC) is at - 9.8 eV for the C-2s. In between, there are two such 

peaks which progressively evolve as x increases. In the upper valence band region (0 to -8 eV), 

the shifts of the peak structures are more complex, a reflection of the change in the bonding 

involving N-2p and C-2p orbitals.  A noticeable observation is the relatively large low DOS 

region from -2.9 to -4.3 eV in Ti2AlN. Below -2.9 eV, there are three noticeable peaks at -6.58, -

4.96, and -4.52 eV respectively. Above these minimum, Ti2AlN has a double peak at -1.87 and -

1.36 eV. These structures progressively evolve as x increases.  At Ti2AlC, the DOS features in 

the range changed completely. Essentially, it has a sharp minimum of almost zero DOS at -2.13 

eV with well-defined peak at –1.19 eV above and at -2.54 eV below the minimum. Such detailed 

evolution can only be revealed by detailed supercell calculations with large x values. 
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The atom resolved partial DOS (PDOS) for MAX phases is far more revealing on the electronic 

structure. However, presenting such results for all 17 supercell models is not practical. We 

selected four x values in the solid solution series for illustration. x = 0 and 1, the end members 

and x = 0.5 and 0.812, the intermediate x values where some interesting change in the 

mechanical properties occur as discussed above.  They are plotted in Fig. 7. In Table 3, we also 

list the values of the DOS at the Fermi level, or N(EF) and the contributions from each type of 

atom. Note that these values corresponding to supercell so to convert the value to the unit cell, 

they need to be divided by 16. As is well known, most of the states at the EF in MAX phases 

come from the d orbitals of transition metal M. This is certainly true for the Ti2Al(CxN1-x) solid 

solution. The contribution from either N or C are almost negligible. From Table 3, it shows that 

the total DOS at Fermi level decreases as x increases. For x = 0 and x = 0.5, the N(EF) values are 

almost the same. The interesting point is that the contribution from Ti at x = 0.5 is actually larger 

than that of Ti2AlN (x = 0). 

 

We have also calculated the Mulliken effective charge Q* and the bond order (BO) according to 

the equations (1) and (2) in Section 2. The Q* values give us the charge transfer ∆Q* for each 

types of atoms. The variation of ∆Q* = Q
o
- Q* where Q

o
 is the charge on the neutral atom is 

displayed in Fig. 8 (a). Both Ti and Al lose charge to N and C. It slightly increases in case of Ti 

but slightly deceases in Al with increasing x. The BO value between each pair of atoms is a 

quantitative measure of the relative strength of a bond. The total BO (TBO) of a crystal is the 

sum of all the bond order values in that crystal. When the TBO is divided by the volume of the 

crystal, we have the total bond order density (TBOD). The TBO can also be divided into 

different pairs: Ti-C, Ti-N, Ti-Ti and Al-Al. The directionality of these bonds could also affect 

the stability and variations mechanical parameters of the solid solutions. In Fig. 8(b), we plot the 

TBO in Ti2Al(CxN1-x) solid solution as a function of x. It steadily increases as x increases 

reflecting the stronger T-C bonds compared to Ti-N bonds. We also note that the variations at 

small x (N-rich) and at large x (C-rich) are linear but with slightly different slopes. The two 

straight lines intercept at x = 0.5.  

 

The calculated frequency-dependent real part of the optical conductivity σ1(ℏω for the 

Ti2Al(CxN1-x) solid solution is shown in Fig. 9. For the end members x = 0 and x = 1. The results 

are similar to those of ref. [39]. It can be seen that the main absorption peak in the conductivity 

at about 4.9 eV in Ti2AlN (x = 0) start to shift to lower energy at x = 0.5 and a new broader peak 

structure began to develop at x > 0.75 at about 6 eV which becomes fully developed at Ti2AlC (x 

= 1.0). All, these indicate the subtle changes in the electronic structure also affect the optical 

conductivity spectra as x changes.   

 

3.3 Discussion  

 

The above results firmly establish the trends in a continuous variation of solid solution 

composition x from Ti2AlN to Ti2AlC using rigorously ab initio calculations on stoichiometric 

supercell models. It is instrumental to compare these trends with what have been reported in the 

literature on the limited data on Ti2Al(CxN1-x) solid solutions. Before we proceed, several facts 

must be emphasized. Firstly, there is no measured data for a continuous variation in x. Most of 

the available data we are aware of are on Ti2AlC0.5N0.5, or x = 0.5[7-9]. Second, It is unrealistic 

to expect a close agreement between measured data and our simulation because the samples for 
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the MAX solid solutions are plagued with the problems of substoichiometry, presence of defects 

or vacancies at X or Al sites and porosity. Thirdly, the present supercell calculation, despite 

being the first for such realistic calculation, may still not be large enough to account for the 

subtleties related to the MAX solid solutions.  Nevertheless, these data certainly provide the 

overall trend for the properties transition from a pure stoichiometric Ti2AlN phases to another 

pure Ti2AlC phase with sequential substation of N by C and vice versa.  

 

It is interesting to point out that an early paper in 1996 by Piezka and Schuster[5] that 

preparation of continuous solid solution for Ti2Al(CxN1-x) for x = 0.0 to 0.8 at 1490C appear to 

be difficult beyond x = 0.8. This may be correlated with the greater change in the lattice constant 

c and variations in the elastic and mechanical properties we simulated above this x values. For 

example, there is a crossover of the elastic coefficient C13 and C12 at x = 0.815 as pointed out in 

Section 3,1. The near linear relationship in variation of lattice constant a and c for x < 0.6 

including the uptake of a for x > 0.6 shown in Fig.3 appears to be in very good agreement with 

the data shown by Cobioch[9]. Reference 9 is the only work we can locate where in there are 

measurements at x = 0.0, 0.25, 0.5 0,75 and 1.0. Despite the fact that samples used in these 

measurements contain porosity or grossly nonstoichiometry for Ti2Al(Cx,N1-x)y for y ≠ 1.   It is 

gratifying to see that the data for y =1, the trends for the change in a and c are consistent with our 

simulate data shown in Fig. 3(a).  

 

The measurement for electronic structures in Ti2Al(CxN1-x) solid solutions is even less than the 

lattice constant an mechanical properties.  Scabarozi et al.[8] carried a specific heat measurement 

at constant volume for x = 0.5 sample and deduced through electron-phonon coupling constant 

that the N(EF) at x = 0.5 is significantly larger than x = 0 or 1. This seems to be not directly 

supported by the simulation data shown in Table 3.  However, the calculated data did show that 

the Ti component of the DOS at Fermi level is the greatest at x = 0.5. It is more likely that the 

N(EF) used in the analysis should be more likely from the 3d electrons of the metal component, 

or Ti. Despite of some obvious disagreements, our calculations using a single method for 

continuous variation in x is quite illuminating in giving the overall trends.  

 

4. Conclusions  

 

We have carried out a detailed calculation on the Ti2Al(C1-xNx) solid solution using large 

supercells in order to answer some of the pressing questions. It is fairly clear that for this solid 

solution, the mechanical properties vary continuously with x between Ti2AlN and Ti2AlC with 

no evidence strengthening beyond the end members. They do have subtle variations for x > 0.5 

which are supported by some existing experimental reports.  This does not rule out the possibility 

of strengthening MAX phases in other solid solutions with substitutions in “M” or “A” elements. 

This is the first time that such large calculations using supercells for MAX solid solutions have 

been attempted. It is quite obvious that similar approach can be extended to other solid solutions 

and also used to study vacancies, porosities, formation of oxynitirdes in Ti2Al(CxNyOz) etc. Such 

simulations will require even larger supercells but is clearly within our research if sufficient 

resources can be obtained.  

 

There are ample evidences that many of the samples in the measurement for Ti2Al(C1-xNx) solid 

solution have sub-stoichiometry at the X and A sites. This implies that the calculations 
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performed on stoichiometric perfect sample can be used as a guideline in the limit of ideal 

situation. In this respect, repeated measurement on high quality and dense samples will be 

extremely valuable.  

 

Finally, the fundamental question raised on the difference between MAX carbide and MAX 

nitrides cannot be explained in simple terms by detailed study for the Ti2Al(C1-xNx) solid 

solution alone because of the complex interplay of many contributing factors. It remains to be 

seem if statistical approach of data mining will be able to reach this goal.  We still cannot resolve 

the general issue of why there are more MAX carbides than nitrides since the current study 

covers two existing end members in the series. We can only show the intrigue and subtle 

differences in their mechanical properties. A broad genomic approach use larger data base in 

seeking global correlation may help[2].   
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Table 1. Total Energy dispersion with 10 models for each x.  
Energy is in eV and σ is standard deviation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Table 2. Calculated elastic coefficients and mechanical parameters of Ti2Al(C1-xNx).   

X C11 C33 C44 C66 C12 C13 K G E η G/K 

0.000 314.94 292.58 128.57 122.44 71.87 94.96 160.67 119.38 287.05 0.202 0.743 

0.062 315.04 290.06 128.15 123.02 69.16 93.07 158.97 119.61 286.88 0.199 0.752 

0.125 314.69 288.32 127.84 123.64 67.50 91.65 157.70 119.75 286.68 0.197 0.759 

0.188 313.41 286.98 127.26 123.51 66.26 90.00 156.26 119.56 285.79 0.195 0.765 

0.250 310.73 285.45 126.92 122.99 64.36 89.33 154.77 119.06 284.27 0.194 0.769 

0.312 307.31 282.14 125.76 122.33 62.40 88.44 152.81 118.01 281.55 0.193 0.772 

0.375 303.49 279.61 124.70 121.42 60.57 88.20 151.16 116.84 278.71 0.193 0.773 

0.438 300.31 277.63 123.77 120.81 59.20 87.68 149.70 115.94 276.44 0.192 0.774 

0.500 297.78 275.63 122.34 119.71 58.64 86.18 148.12 114.95 273.99 0.192 0.776 

0.562 297.83 275.09 120.89 119.11 59.90 83.24 147.06 114.67 273.04 0.191 0.780 

0.625 298.71 274.85 119.33 118.56 61.92 79.46 145.99 114.56 272.41 0.189 0.785 

0.688 300.42 275.20 117.94 117.86 64.82 75.45 145.24 114.58 272.16 0.188 0.789 

0.750 301.98 274.99 116.22 117.56 67.03 72.18 144.55 114.38 271.53 0.187 0.791 

0.812 303.48 274.63 114.54 117.64 68.64 69.21 143.83 114.23 270.96 0.186 0.794 

0.875 304.92 274.14 112.78 118.38 68.79 66.81 143.02 114.14 270.47 0.185 0.798 

0.938 305.64 272.54 110.68 119.00 67.84 65.02 141.93 113.70 269.21 0.184 0.801 

1.000 305.34 269.46 108.62 119.16 66.69 63.26 140.47 112.92 267.17 0.183 0.804 

 

 

x Smallest E Mean σ 

0.062 -1029.2448 -1029.2296 0.0230 
0.125 -1027.5354 -1027.4447 0.0595 
0.188 -1025.7350 -1025.6525 0.0629 
0.250 -1023.9482 -1023.8410 0.0792 
0.312 -1022.0858 -1021.9424 0.1000 
0.375 -1020.1519 -1020.0183 0.0995 
0.438 -1018.2722 -1018.0161 0.1533 
0.500 -1016.2020 -1016.0403 0.1014 
0.562 -1014.1907 -1013.9866 0.1862 
0.625 -1012.1220 -1011.9454 0.1429 
0.688 -1010.1013 -1009.8058 0.1342 
0.750 -1007.8392 -1007.6485 0.1067 
0.812 -1005.5644 -1005.4777 0.0814 
0.875 -1003.3251 -1003.2511 0.0711 
0.938 -1000.9244 -1000.8834 0.0325 
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Table 3. Calculated DOS at Fermi level N(EF) (in unit of states/eV-supercell) and its atom 

resolved components for x = 0 (Ti2AlN),  x = 0.5 (Ti2AlC0.5N0.5),  x = 0.815 and x = 1 

(Ti2AlC).  

x Total Ti Al N C 

0.000 61.2812 47.7525 11.3000 2.2287 0.0000 

0.500 60.5538 49.9930 9.2121 0.7471 0.6016 

0.812 45.2068 35.5242 8.5617 0.2162 0.9047 

1.000 43.0831 33.6386 8.2667 0.0000 1.1778 
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Figure Captions: 

Figure 1. Ball and stick illustration of the 4 x 4 x 1 supercell of Ti2AlCxN1-x solution.  

Left: x = 0 (Ti2AlC); middle: x = 0.5 (Ti2AlC0.5N0.5); right: x = 1 (Ti2AlN). Grey, Ti atoms; Blue, 

C atoms; red, N atoms; pink, Al atoms.   

 

Figure 2. Variation in standard deviation (σ) in eV with increased C concentration (x).   

 

Figure 3. Top: variation of supercell lattice constants a and c in Ti2AlCxN1-x solid solution; 

bottom: change in cell volume as function of x.   

 

Figure 4. Variation of the elastic constants of Ti2AlCxN1-x solid solution as a function of x.  

 

Figure 5. Top: Variations of the mechanical bulk properties (K, G, and E) (Top); Poisson’s ratio 

η and G/K (bottom) of Ti2AlCxN1-x solid solution as a function of x.  

 

Figure 6. Calculated total density of states (TDOS) of Ti2AlCxN1-x solid solution.  

 

Figure 7. Calculated partial density of states (PDOS) of Ti2AlCxN1-x solid solution for x = 0, 0.5, 

0.815 and 1.  

Figure 8. (a) Variation of calculated charge transfer for Ti, Al, N and C with x in Ti2AlCxN1-x. (b) 

Variation of total bond order in the supercell as a function x.  

Figure 9. Calculated frequency-dependent optical conductivity in Ti2AlCxN1-x solid solution as a 

function of x. 
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Figures: 

 

 

 

 

 

 

Figure 1. Representative ball and stick diagrams of 4 x 4 x 1 supercell of Ti2AlCxN1-x 

solution. Left only C, middle 50 % C and 50 % N and right only N. 
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Figure 2. Variation in standard deviation (σ) in eV with increased C concentration (x).   
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Figure 3. Change in lattice constants in Ti2AlCxN1-x solid solution (top) and volume (bottom). 
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Figure 4. Elastic constants of Ti2AlCxN1-x solid solution plotted with x along the x-axis.  
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Figure 5. (Top) The mechanical bulk properties of Ti2AlCxN1-x..  (Bottom) Poisson’s ratio and 

G/K. 
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Figure 6. Total density of states (TDOS) of Ti2AlCxN1-x solid solution. The number in box 

represent x. 
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Figure 7. Total and partial density of states (DOS) in x=0.000, 0.500, 0.812, and 1.000. Top 

panel in each figure is total for that structure and bottom panels show atom resolved 

partial DOS. 

 

 

 



22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  (a) Variation of calculated charge transfer for Ti, Al, N and C with x in Ti2AlCxN1-

x.  (b) Variation of total bond order in the supercell as a function x.  
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Figure 9. Frequency dependent averaged optical conductivity of Ti2AlCxN1-x solid solution. 
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