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In previous work, we reported on the isolation and genome sequence analysis of Bacillus cereus strain tsul NCBI accession number
JPYN00000000. The 36 scaffolds in the assembled tsul genome were all aligned with B. cereus B4264 genome with variations.
Genes encoding for xylanase and cellulase and the cluster of genes in the poly-3-hydroxybutyrate (PHB) biosynthesis pathway
were identified in tsul genome. The PHB accumulation in B. cereus tsul was initially identified using Sudan Black staining and
then confirmed using high-performance liquid chromatography. Physical properties of these PHB extracts, when analyzed with
Raman spectra and Fourier transform infrared spectroscopy, were found to be comparable to the standard compound. The five PHB
genes in tsul (phaA, phaB, phaR, phaC, and phaP) were cloned and expressed with TOPO cloning, and the recombinant proteins
were validated using peptide mapping of in-gel trypsin digestion followed by mass spectrometry analysis. The recombinant E. coli
BL21 (DE3) (over)expressing phaC was found to accumulate PHB particles. The cellulolytic activity of tsul was detected using
carboxymethylcellulose (CMC) plate Congo red assay and the shift towards low-molecular size forms of CMC revealed by gel

permeation chromatography in CMC liquid culture and the identification of a cellulase in the secreted proteome.

1. Introduction

Since 1960s, driven by public concerns about environmen-
tal pollution by petroleum-derived plastics [1-6] and the
escalating crude oil price due to the depletion of fossil oil
resources, bioplastics have attracted widespread attention,
as eco-friendly, biodegradable, and sustainable alternatives
[4, 7]. Among all the biodegradable plastics, the polyhy-
droxyalkanoates (PHAs) family has unique properties like
insolubility in water, biocompatibility, oxygen permeability,
and ultraviolet (UV) resistance [8]. Because of these advanta-
geous characteristics, comprehensive applications have been
discovered and developed using PHAs-derived materials for
packaging plastics, medical materials, chiral monomer, and
others [9, 10]. Also stable engineered industrial microbial
strains have been developed overexpressing genes in PHAs

biosynthesis pathway with additional functions in regulat-
ing cellular metabolisms and stress resistance [11, 12]. The
main member of the PHAs family is polyhydroxybutyrate
(PHB). These polymers are accumulated intracellularly in
PHB producing bacteria when cultured under carbon-excess
and other nutrients-limited conditions [13].

A large number of microorganisms have been found
to accumulate PHA as lipoidic storage materials in the
cytosol [14-17]. These microorganisms are mainly divided
into four classes (I, II, III, and IV) based on the type of PHA
synthases, which are the key enzymes for PHA biosynthesis
[18]. While a single subunit PhaC was found in class I
(e.g., Ralstonia eutropha) and class II (e.g., Pseudomonas
aeruginosa) synthases, two subunits, PhaE and PhaC, or
PhaR and PhaC, were suggested to be used, respectively, in
type III (e.g., Allochromatium vinosum) and type IV (e.g.,
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Bacillus megaterium) synthases [19, 20]. Classes I, III, and IV
synthases act on polymerase short-chain monomers (C3-C5)
whereas class II synthase acts on medium-chain length (mcl)
monomers (C6-Cl4). The most recently discovered class IV
PHA synthase is only present in Bacillus sp. There is little
information about the capacity of PHAs production and the
substrate specificity of class IV PHA synthase.

The higher production cost compared to petroleum-
derived plastics is the primary factor limiting practical
application of these biodegradable polymer materials. The
following two approaches have been taken to make the PHAs
mass production economically feasible. Firstly, engineered
E. coli strains producing higher yield of PHAs [21, 22] have
been developed using recombinant DNA technology. The
optimization of the intermediate substrates and fermentation
conditions is the key step in utilizing this technology in
large scale PHAs production. The second approach focuses
on looking for cheaper raw materials. Carbon source for
PHB production accounts for up to 50% of the total pro-
duction costs. Agricultural byproducts like soybean cake
[23], biogas methane [24], and palm oil [25] as inexpensive
carbon feedstock exhibit a high potential to accelerate the
commercialization of PHAs. Rapeseed (canola seed) oil is
one of the preferred oil stocks for biodiesel production,
partly because rapeseed produces more oil per unit of land
area compared to other oil sources, such as soybeans [26].
Rapeseed cake is generated as a byproduct during the oil
extraction process from rapeseed (canola seed), which will
be tested in this study for its potential use as a substrate for
PHB production. The physical properties of PHB products
produced by the bacteria cultured in aqueous extracts of
rapeseed cake were confirmed with Raman spectrum and
Fourier transform infrared spectroscopy (FTIR).

Previously, we reported the genome sequence of B.
cereus tsul [27]. This paper reports on the assembly of the
genomic structure, and characterization of cellulolytic and
PHB producing activities of this strain. PHB biosynthesis
pathway genes were cloned and (over)expressed in E. coli
BL21 (DE3) using TOPO cloning system. The recombinant
bacterial clones were confirmed to accumulate PHB granules.

2. Materials and Methods

2.1. Genomic Structure Analysis. In previous research, draft
genome of Bacillus cereus tsul was generated using next gen-
eration sequencing analysis [27]. To generate an alignment
map of the assembled tsul scaffolds (GenBank: KN321896-
KN321931) using MUMmer (version 3.0) on the galaxy work-
ing station (biou.psc.edu/galaxy) [28], the genome sequence
of B. cereus B4264 (NCBI GenBank: CP001176.1) with the
highest identity similarity clustered by phylogenetic COG
(PCOGR) was downloaded from NCBI database and used as
the reference (Figure S1in Supplementary Material, available
online at https://doi.org/10.1155/2017/6192924) [29]. Based on
the alignment, 20 scaffolds of tsul were selected to construct
a circular genomic map using DNAPIotter (version 10.2)
[30, 31]. Localizations of annotated genes on these scaffolds
and on the reconstructed circular map were described in
Supplementary Table SI.
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2.2. Cloning and Expression of PHB Pathway Genes. Putative
genes encoding for enzymes in PHB biosynthesis pathways
were identified in the annotated genome. Five genes were
amplified from tsul genomic DNA using the polymerase
chain reaction (PCR) with primers designed against the
assembled gene sequences (see Supplementary Table S2). The
PCR program was conducted as follows: after a hot start cycle
of 94°C for 2 mins, there were 35 cycles of denaturation at
94°C for 30s, annealing at a melting temperature (T,,) for
each individual primer, and extension at 72°C for 1min, fol-
lowed by a final cycle of 72°C for 10 mins. PCR products were
separated on a 0.7% agarose gel. After staining with ethidium
bromide, DNA fragments were isolated from the gel, purified
using Qiagen Gel Extraction Kit (Cat. number 28704), and
then cloned into TOPO pET101 vector (Invitrogen, CA).
Plasmid with gene inserts was sent to GenHunter (624
Grassmere Park Drive, St 17, Nashville, TN 37211) for Sanger
sequencing with primers (T7 forward and reverse) that flank
the insertion site. Recombinant plasmids carrying full-length
gene sequences were transformed into E. coli BL21 (DE3) cells
and expression of recombinant proteins was induced by the
addition of isopropyl -D-I-thiogalactopyranoside (IPTG)
in LB broth to a final concentration of 0.5-0.8 mM. Cells
were harvested after 4-hour induction by centrifugation. Cell
pellets were frozen in liquid N, and stored at —20°C before
conducting protein analyses.

For two-dimensional (2D) protein gel electrophoresis of
the recombinant proteins, cell pellets were homogenized in
500 uL dissolution buffer consisting of 7 M urea, 2 M thiourea,
and 4% (3-((3-cholamidopropyl) dimethylammonio)-1-prop-
anesulfonate) (CHAPS). After centrifugation at 16,000 xg,
4°C for 20 min, supernatants were collected. Protein concen-
tration was assayed following the Bradford method using BSA
as the standard protein (Bio-Rad). Supernatants containing
200 ug protein samples were mixed with 5 M dithiothreitol
(DTT), and 1.25 uL IPG buffer (pH 3-10 NL, GE Healthcare).
Upon bringing to a final volume of 250 ul using DeStreak
Rehydration Solution (GE), proteins were loaded onto 13 cm
pH 3-10 NL Immobiline DryStrips (GE). After an overnight
passive rehydration at room temperature, proteins were
focused on an Ettan IPGphor II (Amersham Biosciences)
until reaching 24,000 total voltage hours (VhT). Prior to
second dimensional electrophoresis, IPG strips were reduced
with 1% DTT and then neutralized in 2.5% iodoacetic acid
(TAA). Both of these steps were performed in a buffer
containing 50 mM Tris-HCI, pH 8.8, 6 M urea, 30% glycerol,
and 2% SDS. The second dimensional separation was per-
formed on 12.5% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) gels (1mm in thickness) using
a SE 600 Ruby Standard Vertical Unit (GE). Gels were run
at a constant current (20 mA/strip after an initial run of
10 mA/strip for 30 min) until the bromophenol front reached
the bottom of the gel and then stained with Colloidal blue
staining kit (Invitrogen, LC6025). Gel images were captured
by scanning on a Typhoon 9400 variable mode imager (GE).
Recombinant proteins were localized to the spots on 2D
gels according to their hypothetical isoelectric point and
molecular weight. These protein spots and spots at the same
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position on gels loaded with proteins without IPTG induction
were picked followed by in-gel tryptic digestion [32].

Tryptic peptide samples were reconstituted in 15 uL of
3% acetonitrile with 0.1% trifluoroacetic acid. Nano-liquid
chromatography (LC) separation of tryptic peptides was
performed using a nanoAcquity UPLC (Waters, Manchester),
equipped with a Symmetry C,g 5pum, 20mm x 180 ym
trapping column and a bonded ethyl hybrid C;g 1.7 ym,
15cm x 75um analytical column (Waters). Mobile phase
A consisted of water with 0.1% formic acid (FA) in water
and mobile phase B acetonitrile with 0.1% FA. Samples,
at 5uL injection volume, were transferred to the trapping
column at a flow rate of 7 yL/min 100% mobile phase A for
5min. Following desalting and concentrating, the trapping
column was eluted to the analytical column equilibrated
with 2% mobile phase B at 300 nL/min. The eluent from the
analytical column was delivered to a Xevo G2 Q-TOF mass
spectrometer (MS) via a nanolockspray ion source (Waters).
Data dependent acquisition (DDA) mode was used to obtain
one 0.25s MS survey scan. MS survey scans were acquired
from m/z 300-1500, while product ion scans were acquired
from m/z 50-2000. All data were acquired using MassLynx
4.1 SCN 862 (Waters). ProteinLynx Global Server v.2.5 was
used to convert raw spectral data files for each injection
into a peak list (.pkl format). To identify the matching
sequences, the peak list from each protein spot was compared
to theoretical tryptic digestion fragments of recombinant
proteins.

2.3. Cellulolytic Activity Assay. Bacteria were cultured on the
double-layered carboxymethyl cellulose sodium salt- (CMC-
Na-) containing plates of which the bottom M9 minimal salt
(11%; wt/vol) medium was overlaid with soft-agar containing
1% (wt/vol) CMC-Na (Sigma, St. Louis, MO). A cellulolytic
bacterial strain Paenibacillus polymyxa 25A2" [33-35] was
obtained from the Bacillus Genetic Stock Center (Columbus,
OH). In these assays, P polymyxa 25A2" was used as the
positive control for testing cellulase activity and E. coli was
used as the negative control. After incubation at 37 + 1°C for
2 days, the CMC agar plates were stained with 0.1% Congo red
solution following the method described previously [36, 37].
Plates were recorded for the formation of a clear zone around
colonies, which indicates extracellular cellulolytic activity of
the bacteria.

To further characterize the bacterial strain, a single colony
of B. cereus tsul was inoculated into LB broth and incubated
at 37°C under constant agitation at 200 rpm. Aliquots of an
overnight culture of B. cereus tsul (1mL) were inoculated
into 10 mL M9 minimal salt medium supplemented with
1% (wt/vol) CMC-Na, and the control culture used the
broth solution only. Cultures were continued under the
same conditions. Two culture period treatments of 2 days
and 6 days each with three replicates were conducted. At
the end of each treatment period, bacterial cultures were
centrifuged at 16,000 xg for 1 min to collect supernatants. For
gel permeation chromatography (GPC) assays of cellulose
degradation, 2mL of the supernatant from each sample was
filtered through a 0.22 ym sterile filter (EMD Millipore, Mas-
sachusetts) and eluted into a clean 2 mL Eppendorf centrifuge

tube. Gel permeation chromatography (GPC) analyses were
performed on a Varian Prostar chromatography system
(Walnut Creek, CA) equipped with a Waters Ultrahydrogel
2000 column (Milford, WA). Each 800 L sample was diluted
in 200 uL GPC solution (25 mM Na-acetate : methanol; 9:1).
For each sample, 20 uL was injected each time. Analyses
were performed at room temperature with a mobile phase
consisting of 25 mM Na-acetate : methanol (9:1) at a flow rate
of 0.75mL/min and the UV/Vis absorbance was monitored
at 210 nm using a photodiode array (PDA) detector. The
collected data was used to compare the molecular weight
changes between samples.

Supernatant collected for GPC analysis was mixed with
acetone (1: 3; v/v) followed by incubation overnight at —20°C
for secreted protein precipitation. After centrifugation at
16,000 xg for 1 min at 4°C, supernatant was removed. Protein
pellets were air-dried, solubilized in a 1x Laemmli protein
sample buffer (Biorad), and denatured by boiling for 5 min.
Proteins were separated on a SDS-PAGE protein gel [27].
After staining with Coomassie Blue, protein bands were
isolated from the gel and digested with trypsin [32], followed
by liquid chromatography (LC)/mass spectrometry (MS)
as described above. The generated peptides were searched
against annotated protein database of B. cereus tsul (download
from https://www.ncbi.nlm.nih.gov/protein/?term=Dbacillus+
cereusxtsul).

2.4. Poly-3-Hydroxybutyrate (PHB) Producing Activity Assay.
The intracellular accumulation of PHB in B. cereus tsul was
determined using the Sudan Black B staining method [38].
Bacterial smears were prepared using a four-day culture in LB
broth and stained in a 0.3% Sudan Black stain solution (w/v)
in 60% ethanol for 10 min. After rinsing with water, bacterial
cells were counter-stained with 0.25% safranin for 1min.
Stained bacterial cells were observed and photographed
under a Nikon Eclipse E600 Pol microscope (Japan).
Rapeseed cake samples (25g) were soaked in 1L water
overnight under constant stirring. The supernatant was fil-
tered through a 0.22 ym filtration system (EMD Millipore),
and the rapeseed cake substrate (RCS) was used for bac-
terial cultures without any supplements. The total protein
concentration in RCS was quantified using Bradford protein
assay method. Bacterial cultures were incubated overnight in
RCS and harvested by centrifugation at 3,220 xg, 24°C, for
10 min. Cell pellets were oven-dried at 70°C to a constant
weight and lysed by dispersing in 6% sodium hyperchlorite.
After incubation at 37°C for 1h, cell pellets were washed in
5mL alcohol and then in 5mL acetone. PHB was extracted
by bathing the pellet in chloroform at 60°C for 1h [39-41].
Then, chloroform was evaporated to obtain PHB crystals.
PHB extracts were digested in 1mL concentrated sulfuric
acid at 100°C for 30 min, chilled to room temperature, and
then diluted in 0.001 N H,SO, to a final concentration of
0.8 mg/mL adipic acid, which are the 250x stock solutions.
The digested PHB-containing mixture was fractionated
using high-performance liquid chromatography (HPLC)
equipped with an Aminex HPX-87H ion-exclusion resin for
organic acid analysis column (300 by 7.8 mm). The poly-(R)-
3-hydroxybutyric acid (Sigma, MO) was used as the standard.
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The crotonic acid formed from PHB acid digestion was
detected by the absorbance peak at 210 nm [42] (Supplemen-
tary Table S4). Aliquots of PHB extracts were also analyzed
onaspectrophotometer (SpectraMax M5, Molecular Devices,
CA). The absorbance of the diluted sample (1:250) from
acid digestion was measured at 235nm. A standard curve
was constructed using commercial PHB (Sigma) [43]. After
confirmation of both methods giving nearly the same results,
PHB content from bacterial batch culture was assayed using
the spectrophotometric method (Supplementary Table S4).

2.5. Physical Structural Property Analysis of tsul-PHB. An
Xplora Raman spectrometer (LabRAM; HORIBA Jobin
Yvon, NJ) was used with a NIR diode laser (A = 785 nm,
power = 2.5mW) as an excitation source. The instrument
settings were 100 ym confocal hole, 100 ym wide entrance slit,
600 gr/mm grating, and Olympus SLM Plan N 10x objective
lens. Samples were mounted on a computer-controlled, high-
precision x- y stage. An exposure time of 40 s and 5 accumu-
lations were used to collect the spectra. Baseline fitting was
performed using a LabSPEC 5 (HORIBA Jobin Yvon).
Samples were placed on the diamond crystal top plate
of an attenuated total reflectance (ATR) accessory (Thermo
Scientific Nicolet 1S10, Thermo Scientific, Waltham, MA).
Thumbscrew pressure was used to ensure that samples were
in contact with the crystal. Data from sixteen scans were
averaged over the spectral range of 4000 to 650 cm ™, with
a resolution of 4cm™'. Ambient air was used as the reference
for the background spectrum before each sample. Between
samples, the ATR crystal was cleaned using distilled water
and dried. All spectra were recorded at room temperature. No
data processing was performed on the raw spectra. The PHB
standard (Sigma) was used as the reference for these analyses.

3. Results

3.1. Characterization of Microbial Genome of B. cereus tsul.
The 36 assembled scaffolds of B. cereus tsul were each aligned
to a distinct region of the genome from B. cereus B4262 [27].
Regions of scaffolds 4, 6, and 15 did not match the reference
genome (Figure 1). The circular genome map of B. cereus
tsul (Figure 2) was constructed using the annotation of the
assembled scaffolds in reference to B. cereus B4264 genome
(see Table SI in Supplementary Material).

3.2. Characterization of the PHB Biosynthesis Pathways. Six
PHA synthesis related genes were located on scaffold 9. phaR
(PHB synthase subunit), phaB (acetoacetyl-coA reductase),
and phaC (PHB synthase subunit) are divergently transcribed
as a tricistronic operon; padR/phaQ (transcription regulator),
phaP (Phasin protein), and phaJ are transcribed in one
direction. The padR gene is a PHB-responsive repressor
controlling expression of phaP and phaR. Phasins are proteins
that accumulate during PHA synthesis; they bind to PHA
granules and promote further PHA synthesis. Gene phaA
is located on a separate scaffold. The phaJ gene encodes
for (R)-specific enoyl-CoA hydratase which is involved in
fatty acid metabolism (Figure 3(a)). PHB granules were seen
inside bacterial cells (Figure 3(b)). The five genes in PHB
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synthesis pathway (phaA, phaB, phaC, phaP, and phaR)
were cloned. The size and sequences of these genes are
identical to the predicted gene sequences in the annotated
genome sequences (Figure 3(c)). The recombinant proteins
matched the predicted proteins in both molecular size and
isoelectric points (pI value). Furthermore, mass spectrometry
(MS) analysis of the tryptic digests of recombinant proteins
showed that the peptide coverage ratio (identified/predicted)
is 70%, 95%, 82%, 78%, and 100% for PhaA, PhaB, PhaC,
PhaR, and PhaP, respectively (Figure 3(d); see Table S3 in the
Supplementary Material). When the phaC-(over)expressing
recombinant E. coli cells were cultured overnight under the
IPTG induction condition, PHB granules were observed
in Sudan Black stained cells (Figure 3(e)). These results
confirmed that the PHB genes from B. cereus tsul can drive
biosynthesis of the polymer in recombinant E. coli clones.

3.3. Characterization of Cellulolytic Pathways. The conver-
sion of cellulose into glucose consists of two steps. Dur-
ing the first step, beta-1,4 glucanase breaks the glucosidic
linkage to cellobiose. Subsequently, this beta-1,4 glucosidic
linkage of cellobiose is broken down by beta-glucosidase
to produce glucose. Both endo-beta-glucanase and beta-
glucosidase were found in the tsul genome. One xylanase
gene for the degradation of hemicellulose was identified in
the genome (Figure 4(a)).

The Congo red test showed that the B. cereus tsul
colonies formed a clear distinct yellow halo, which is an
indication of extracellular cellulase enzymes produced by the
bacterium. The same reaction was observed in Paenibacillus
polymyxa, but not in E. coli colonies (Figure 4(b)). Gel
permeation chromatography (GPC), also known as size-
exclusion chromatography, is often used to characterize the
molar mass distribution of natural and synthetic polymers.
Various incubation-period products from CMC-containing
substrates after culturing B. cereus tsul were compared. With
longer treatment time (in 6-day sample), a lower intensity
of high molecular weight component (between 11.5 and
12.5min) was observed whereas a higher peak intensity of
small molecules (between 13 and 14 min) emerged. The clear
shift to longer retention times of the bacterial-treated prod-
ucts relative to the untreated products clearly demonstrates
CMC degradation into smaller molecules in the bacterial-
treated samples (Figure 4(c)).

The bacterial secreted proteins were separated into five
major bands on SDS-PAGE gels (Supplementary Figure S2).
Among all the proteins identified by searching the tryptic
digestion peptides against the B. cereus tsul protein dataset
annotated by prokaryotic genome annotation pipeline, one
endo-glucanase matching (GenBank ID: KGT43479.1) was
identified (Table S5 in the Supplementary Material) [27].

Conclusively, the Congo red test, GPC analysis, and
secreted proteome analysis all supported the extracellular
cellulase activity of B. cereus tsul which concurs with its
genome structure.

3.4. PHB Production Efficiency of Bacillus cereus tsul on
Rapeseed Cake Substrate (RCS). In this study, bacterial cell
cultures were grown in RCS without any additional materials.
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FIGURE I: Alignment of assembled scaffolds from Bacillus cereus tsul with the reference genome of B. cereus B4262 using MUMmer on

biou.psc.edu/galaxy.

After overnight batch culture, the cell dry weight reached
540-575mg/L, which produced a 13-14% PHB content per
cell biomass (Table 1).

3.5. Physical Structural Properties of PHB. PHB extracts
from tsul cultures in RCS were compared to poly-(R)-3-
hydroxybutyric acid (Sigma, MO) as the standard. The spec-
troscopic data of Raman and FTIR were used to determine
the physical properties of PHB polymers [8]. The Raman
spectra from regions 300-2200cm ™' and from regions

2200-3000 cm™" showed that the tsul PHB and the standard
were both crystalline. The presence of sharp and narrow
peaks in the Raman spectra at the major positions 434 and
841cm™' also indicated the crystallinity of the tsul PHB.
However, peaks corresponding to C=0 stretching and to CH,
stretching occur at 1731.2 and 2935.4 cm ™", respectively, show-
ing that there were some amorphous regions in the tsul PHB
extracts (see Table S6 in the Supplementary Material). Both
Raman and FTIR spectra of tsul PHB extracts matched those
from the standard (Figure 5). The mean square deviation is 3.7
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TABLE 1: Bacillus cereus tsul cell propagation and PHB production on RCS substrate’.
Items Batch 1 Batch 2 Average
Cell biomass (mg/L culture ) 575.17 + 56.02 540.89 +18.43 558.03 + 28.58
PHB mixture extract (mg/L)* 139.44 +14.18 112.78 + 12.54 126.11 + 9.88
Pure PHB content (mg/L)b 74.66 + 8.54 80.61 +10.32 77.64 + 6.45
PHB content in cell biomass (%)¢ 13% 14.9% 13.95%
PHB conversion efficiency of rape seed cake (g/kg) 2.99 3.22 3.10

" Bacillus cereus tsul was batch cultured for 24 hours in one-liter bottle containing (25 g/L) aqueous extracts of RCS. Two independent experiments each
containing six replicates were conducted; “PHB was extracted from dried bacterial cells. Six replicates were conducted; PHB content in crude extracts was
determined by spectrophotometry analysis; “PHB content measured using the spectrometric method is similar to the HPLC method (37).

1000000
PHA genes
cluster
Bacillus
cereus
4000000 tsul
PhaA 1500000
gene Xylanase
Glucosidase "MMN\

0 by | ¥
Ty o
Endoglucanase 1

3000000

Endoglucanase
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FIGURE 2: Circular genome map of Bacillus cereus tsul. The map
was generated using DNAPlotter (version 10.2) based on annotation
data of the assembled scaffolds of B. cereus tsul (NCBI accession
KN321896-KN321931). The draft genome sequence is 5.81 Mb, and
5.4 Mb was aligned to create the circular genome map. Genes in
PHB biosynthesis pathway phaA, phaR, phaB, phaC, phaQ, phaP,
and phaJ and cellulase genes for endoglucanase, glucosidase, and
hemicellulase gene xylanase were indicated on the genome map.
Locations of genes on the assembled scaffolds and their linkage to
the circular map were provided in Supplementary Table SI.

to 7.1cm ™", which is within the range of discrepancy between
Raman and FTIR spectra of PHB reported in previous studies
[44-46].

4. Discussions

In this paper, we are reporting the characterization of B.
cereus tsul, a bacterium that has the ability to produce
PHB polymer and degrade cellulose. In order to understand
the molecular basis for these biochemical activities and
evaluate the biotechnological potential of this bacterial strain,
we proceeded to analyze its genome structure and test its
extracellular cellulase and PHB producing ability. Analysis
of cellulose degradation activity using GPC and Congo red
staining methods suggests that the bacteria can degrade cel-
lulose into smaller molecular products, but the end-products
of degradation were not identified [47-49]. Cellulose has
been used as a low-cost substrate in PHAs fermentation

studies. Gao et al. reported that the successful transformation
of cellulase and PHB synthesis pathway genes into E. coli
resulted in the production of PHB directly from cellulose;
however, the conversion efficiency and PHB yield were very
low [50, 51]. In our study, the annotated B. cereus tsul genome
contained cellulase (GenBank ID: KGT42715.1; KGT43479.1)
and xylanase (GenBank ID: KGT44235.1) genes. A cellulase
was also identified in secreted proteomes in CMC liquid
culture. In addition, genes in each step of PHB biosynthesis
pathway were identified in B. cereus tsul genome including
several phaA genes and a gene cluster with six PHA genes:
phaR (PHB synthase subunit), phaB (acetoacetyl-coA reduc-
tase), phaC (PHB synthase), and a phaJ, the downstream
phaP (Phasin protein), and the padR (PhaQ transcription
regulator) (see Table S7 in the Supplementary Material).

Based on the PHB gene cluster, B. cereus tsul should
express class IV PHA synthase, which is composed of sub-
units PhaC and PhaR. PhaC is the key enzyme involved in the
polymerization process; it determines the types of monomers
(R-hydroxyacyl-CoAs) incorporated into the PHA polymer
chain based on the enzyme’s substrate specificity, as well as
controlling PHA chain length and polydispersity. Previous
researches consistently indicate that class IV synthases favor
short-chain-length monomers such as 3-hydroxybutyrate
(C4) and 3-hydroxyvalerate (C5) for polymerization, but
it can also polymerize some unusual monomers as minor
components [52-54]. There is an increasing interest in class
IV PHA synthase, due to the possible alcoholysis activity
as an inherent feature among these enzymes [55]. This
alcoholysis reaction is useful not only for the regulation
of PHA molecular weight but also for the modification of
the PHA carboxy terminus, which can be manipulated to
produce more promising PHA materials with more beneficial
properties [56, 57]. The discovery of these genes has increased
our understanding of the PHB synthesis pathway because
they have a specific role that would affect the efficiency and
the types of PHB polymers being synthesized. These genes
found in B. cereus tsul genome related to PHB synthesis and
cellulose degradation will contribute in building a library of
information for constructing more efficient PHB fermenter
hosts in future work.

The high cost associated with the production of PHAs
remains a major barrier for large scale use of bioplastics
[58]. In order to produce PHAs economically, a reliable and
economical supply of raw material is essential; meanwhile,
new bacterial strains and genes need to be discovered in order
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FIGURE 3: Characterization of genes in the poly-3-hydroxybutyrate (PHB) biosynthesis pathways in Bacillus cereus tsul. (a) Genes in the PHB
biosynthesis pathways: phaR, phaB, and phaC on the same operon, pha], phaP, and phaQ on reverse direction, and phaA located on a separate
locus. (b) Sudan Black staining of B. cereus tsul showing accumulation of PHB granules in the bacterial cells. (c) The PHB gene fragments
amplified from the genomic DNA of Bacillus cereus tsul using polymerase chain reaction (PCR) and separated on a 0.7% agarose gel. (d) Two-
dimensional gel electrophoresis of recombinant proteins of PhaA, PhaB, PhaC, PhaR, and PhaP. The PCR amplified gene fragments showing
identical sequence matches with the PHB synthesis genes were cloned into TOPO pET101 vector (Invitrogen, CA); recombinant proteins
were expressed in DE3 cells. Recombinant proteins were separated on 2D gels. Protein spot with matching molecular size and isoelectric
point (pI) of each predicted protein was picked from the gel. Protein identity was confirmed using the peptide fingerprinting (70-100%
coverage with identical predicated peptides) using mass spectrometry analysis of tryptic digests of these proteins. (e) Sudan Black staining of
the recombinant E. coli (over)expressing phaC gene showing intracellular PHB granules; E. coli transformed with the empty vector had no
PHB accumulation. The arrow refers to the black spots inside of the bacterial cell, which is the PHB accumulation stained with Sudan Black.

to use a wider variety of substrates [59, 60]. The aqueous
extract of rapeseed cake (RCS) can be a promising raw
material for PHB production. In this study, PHB content was
13-14% per cell dry weight in overnight batch culture in RCS.
Taking into consideration that no other nutrients were added

in RCS, the bacterial growth performance and PHB content
are relatively lower than other well-developed nutrient sub-
strates. Meanwhile, in this batch culture for PHB production,
no pH buffer solution was added, which may limit the
biomass production, and further limit the PHB production
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(b) Congo Red staining assay on CMC plates. Plate 1,

Escherichia coli (negative control); Plate 2, Bacillus cereus
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(c) Gel permeation chromatography assay of products derived from
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FIGURE 4: Characterization of cellulase gene and enzymatic activity of Bacillus cereus tsul. (a) Cellulase genes annotated in the Bacillus cereus
tsul genome. (b) Congo red plate assay of cellulase activity. Bacteria were cultured on the double-layered carboxymethylcellulose sodium
salt- (CMC-Na-) containing plates of which the bottom M9 minimal salt (11%; wt/vol) agar medium was overlaid with soft-agar containing
1% (wt/vol) CMC-Na (Sigma, St. Louis, MO). Plates from two-day incubation at 37°C were stained with 0.1% Congo red. The yellowish halo
around the bacterial colony indicates degradation of CMC. Plate 1, E. coli showing no CMC degradation activity (negative control); Plate 2, B.
cereus tsul; Plate 3, Paenibacillus polymyxa 25A2" with CMC degradation activity (a positive control of cellulolytic bacterial strain from the
Bacillus Genetic Stock Center, Columbus, OH). (c) Gel permeation assay of CMC derived products after incubation with B. cereus tsul for 2
days and 6 days. The right shifts of the peaks indicate that the CMC derived molecules after the digestion with B. cereus tsul were smaller in
size and therefore they were eluted at a delayed time-frame than the original CMC. These results confirmed the extracellular cellulase activity

of the bacterial strain.

[61]. RCS was estimated to have 8.98 g/L crude proteins, and
it also contained all the essential amino acids for bacterial
growth, and some «- and y-amino-butyric acid (AIB, GABA)
(see Figure S3 in Supplementary Material). Some of these
amino acids can potentially be converted into PHB through
various alternative pathways (see Figure S4 in Supplementary
Material). In a previous study [62], GABA was reported as an

alternative route of catabolism in Saccharomyces cerevisiae.
It is involved in the conversion of GABA into succinate-
semialdehyde (SSA) by 4-aminobutyrate aminotransferase;
meanwhile, glutamate can be converted into GABA by
glutamate decarboxylase. In 2007, Valappil et al. reported that
B. cereus 14579 genome contained all the alternative pathway
genes involved for the conversion of succinyl-CoA from
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FIGURE 5: Physical properties of polyhydroxybutyrate PHB produced by Bacillus cereus tsul on rapeseed cake substrate (RCS). The PHB
standard (Sigma) was used as the reference for these analyses. Raman spectra of PHB produced by B. cereus tsul and standard (a). FTIR

spectra of PHB produced by B. cereus tsul and standard (b).

TCA cycle into PAHB/PH3B/P(3HB-co-4HB) [63]. P(3HB-
co-4HB)-like copolymer was found in B. cereus SPV. In this
alternative pathway, succinyl-CoA is first converted to SSA by
SSA dehydrogenase followed by reduction of SSA into GABA
by 4-hydroxybutyrate dehydrogenase. GABA is activated to
4-hydroxybutyryl-CoA by a Co-A transferase enzyme. The
R-4-hydroxybutyryl-CoA and/or R-3-hydroxybutyryl-CoA
are then to be polymerized to form PAHB/PH3B/P(3HB-co-
4HB) by PHB synthase.

The (R)-specific enoyl-CoA hydratase/MaoC-like protein
(PhaJ) is a monomer supplying enzyme from fatty acid -
oxidation. Tajima et al. demonstrated that Pha] may make a
channeling route from [-oxidation to PHA biosynthesis and
PhaC synthases from B. cereus and its relatives have the ability
to incorporate both scl and mcl PHAs [64]. This alternative
metabolic pathway was confirmed [65] in a recombinant
E. coli strain which utilizes two substrate-specific enoyl-
CoA hydratases, R-hydratase (PhaJ) and S-hydratase (FadB).
In these bacterial strains, the PhaJ] works in coordination

with S-specific hydratases to provide (R)-3HB-CoA for PHA
synthesis from crotonyl-CoA. In 2012, Cai reported that B.
cereus may be another example harboring phaJ in the pha
locus [66]. In B. cereus tsul, the phaJ gene encoding R-
specific enoyl-CoA hydratase (GenBank ID: KGT44860.1)
may function coordinately with an acyl-CoA dehydrogenase
to form (R)-3HB-CoA via crotonyl-CoA intermediate which
is derived from fatty acid p-oxidation (see Figure S4 in
Supplementary Material). Genes in this pathway were found
in the genome of B. cereus tsul. The production of PHB from
RCS may support this alternative catabolism, which may shed
new light on the PHB biosynthesis pathway and open up new
opportunities for its industrial applications.
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