11 research outputs found

    Using florbetapir positron emission tomography to explore cerebrospinal fluid cut points and gray zones in small sample sizes

    Get PDF
    INTRODUCTION: We aimed to assess the feasibility of determining Alzheimer's disease cerebrospinal fluid (CSF) cut points in small samples through comparison with amyloid positron emission tomography (PET). METHODS: Twenty-three individuals (19 patients, four controls) had CSF measures of amyloid beta (Aβ)1-42 and total tau/Aβ1-42 ratio, and florbetapir PET. We compared CSF measures with visual and quantitative (standardized uptake value ratio [SUVR]) PET measures of amyloid. RESULTS: Seventeen of 23 were amyloid-positive on visual reads, and 14 of 23 at an SUVR of ≥1.1. There was concordance (positive/negative on both measures) in 20 of 23, of whom 19 of 20 were correctly classified at an Aβ1-42 of 630 ng/L, and 20 of 20 on tau/Aβ1-42 ratio (positive ≥0.88; negative ≤0.34). Three discordant cases had Aβ1-42 levels between 403 and 729 ng/L and tau/Aβ1-42 ratios of 0.54-0.58. DISCUSSION: Comparing amyloid PET and CSF biomarkers provides a means of assessing CSF cut points in vivo, and can be applied to small sample sizes. CSF tau/Aβ1-42 ratio appears robust at predicting amyloid status, although there are gray zones where there remains diagnostic uncertainty

    Post-vaccination infection rates and modification of COVID-19 symptoms in vaccinated UK school-aged children and adolescents: A prospective longitudinal cohort study

    Get PDF
    Background: We aimed to explore the effectiveness of one-dose BNT162b2 vaccination upon SARS-CoV-2 infection, its effect on COVID-19 presentation, and post-vaccination symptoms in children and adolescents (CA) in the UK during periods of Delta and Omicron variant predominance. / Methods: In this prospective longitudinal cohort study, we analysed data from 115,775 CA aged 12-17 years, proxy-reported through the Covid Symptom Study (CSS) smartphone application. We calculated post-vaccination infection risk after one dose of BNT162b2, and described the illness profile of CA with post-vaccination SARS-CoV-2 infection, compared to unvaccinated CA, and post-vaccination side-effects. / Findings: Between August 5, 2021 and February 14, 2022, 25,971 UK CA aged 12-17 years received one dose of BNT162b2 vaccine. The probability of testing positive for infection diverged soon after vaccination, and was lower in CA with prior SARS-CoV-2 infection. Vaccination reduced proxy-reported infection risk (-80·4% (95% CI -0·82 -0·78) and -53·7% (95% CI -0·62 -0·43) at 14–30 days with Delta and Omicron variants respectively, and -61·5% (95% CI -0·74 -0·44) and -63·7% (95% CI -0·68 -0.59) after 61–90 days). Vaccinated CA who contracted SARS-CoV-2 during the Delta period had milder disease than unvaccinated CA; during the Omicron period this was only evident in children aged 12-15 years. Overall disease profile was similar in both vaccinated and unvaccinated CA. Post-vaccination local side-effects were common, systemic side-effects were uncommon, and both resolved within few days (3 days in most cases). / Interpretation: One dose of BNT162b2 vaccine reduced risk of SARS-CoV-2 infection for at least 90 days in CA aged 12-17 years. Vaccine protection varied for SARS-CoV-2 variant type (lower for Omicron than Delta variant), and was enhanced by pre-vaccination SARS-CoV-2 infection. Severity of COVID-19 presentation after vaccination was generally milder, although unvaccinated CA also had generally mild disease. Overall, vaccination was well-tolerated. / Funding: UK Government Department of Health and Social Care, Chronic Disease Research Foundation, The Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation and Alzheimer's Society, and ZOE Limited

    Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets.</p> <p>Methods</p> <p>The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM).</p> <p>Results</p> <p>A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM.</p> <p>Conclusion</p> <p>The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.</p

    Regional variability of imaging biomarkers in autosomal dominant Alzheimer's disease

    No full text
    Major imaging biomarkers of Alzheimer's disease include amyloid deposition [imaged with [(11)C]Pittsburgh compound B (PiB) PET], altered glucose metabolism (imaged with [(18)F]fluro-deoxyglucose PET), and structural atrophy (imaged by MRI). Recently we published the initial subset of imaging findings for specific regions in a cohort of individuals with autosomal dominant Alzheimer's disease. We now extend this work to include a larger cohort, whole-brain analyses integrating all three imaging modalities, and longitudinal data to examine regional differences in imaging biomarker dynamics. The anatomical distribution of imaging biomarkers is described in relation to estimated years from symptom onset. Autosomal dominant Alzheimer's disease mutation carrier individuals have elevated PiB levels in nearly every cortical region 15 y before the estimated age of onset. Reduced cortical glucose metabolism and cortical thinning in the medial and lateral parietal lobe appeared 10 and 5 y, respectively, before estimated age of onset. Importantly, however, a divergent pattern was observed subcortically. All subcortical gray-matter regions exhibited elevated PiB uptake, but despite this, only the hippocampus showed reduced glucose metabolism. Similarly, atrophy was not observed in the caudate and pallidum despite marked amyloid accumulation. Finally, before hypometabolism, a hypermetabolic phase was identified for some cortical regions, including the precuneus and posterior cingulate. Additional analyses of individuals in which longitudinal data were available suggested that an accelerated appearance of volumetric declines approximately coincides with the onset of the symptomatic phase of the disease

    Volume changes in Alzheimer's disease and mild cognitive impairment: cognitive associations.

    No full text
    OBJECTIVE: To assess the relationship between MRI-derived changes in whole-brain and ventricular volume with change in cognitive scores in Alzheimer's disease (AD), mild cognitive impairment (MCI) and control subjects. MATERIAL AND METHODS: In total 131 control, 231 MCI and 99 AD subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort with T1-weighted volumetric MRIs from baseline and 12-month follow-up were used to derive volume changes. Mini mental state examination (MMSE), Alzheimer's disease assessment scale (ADAS)-cog and trails test changes were calculated over the same period. RESULTS: Brain atrophy rates and ventricular enlargement differed between subject groups (p < 0.0005) and in MCI and AD were associated with MMSE changes. Both measures were additionally associated with ADAS-cog and trails-B in MCI patients, and ventricular expansion was associated with ADAS-cog in AD patients. Brain atrophy (p < 0.0005) and ventricular expansion rates (p = 0.001) were higher in MCI subjects who progressed to AD within 12 months of follow-up compared with MCI subjects who remained stable. MCI subjects who progressed to AD within 12 months had similar atrophy rates to AD subjects. CONCLUSION: Whole-brain atrophy rates and ventricular enlargement differed between patient groups and healthy controls, and tracked disease progression and psychological decline, demonstrating their relevance as biomarkers

    Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders

    No full text
    Spinal cord involvement is an important cause of disability in patients with multiple sclerosis or neuromyelitis optica spectrum disorders (NMOSDs). Multiple sclerosis and NMOSDs can be distinguished from other disorders that cause myelopathy by results from laboratory and radiological investigations. However, limitations in the sensitivity and specificity of spinal cord imaging and poor correlation with disability megasures have impeded the understanding of the relationship between spinal cord involvement and clinical manifestations. Nevertheless, studies of the pathological features of multiple sclerosis and NMOSDs have shown that quantitatively different mechanisms lead to differences in clinical course and pattern of accrual of permanent disability in the two dis-orders. Better understanding of these mechanisms is necessary to develop more informative clinical measures, electrophysiological methods, fluid biomarkers, and imaging techniques to detect and monitor spinal cord involvement in the diagnosis and management of patients with multiple sclerosis or NMOSDs, and as outcome measures in clinical trials
    corecore