32 research outputs found

    Histone Deacetylases Function in the Control of Early Hematopoiesis and Erythropoiesis

    No full text
    International audienceNumerous studies have highlighted the role of post-translational modifications in the regulation of cell proliferation, differentiation and death. Among these modifications, acetylation modifies the physicochemical properties of proteins and modulates their activity, stability, localization and affinity for partner proteins. Through the deacetylation of a wide variety of functional and structural, nuclear and cytoplasmic proteins, histone deacetylases (HDACs) modulate important cellular processes, including hematopoiesis, during which different HDACs, by controlling gene expression or by regulating non-histone protein functions, act sequentially to provide a fine regulation of the differentiation process both in early hematopoietic stem cells and in more mature progenitors. Considering that HDAC inhibitors represent promising targets in cancer treatment, it is necessary to decipher the role of HDACs during hematopoiesis which could be impacted by these therapies. This review will highlight the main mechanisms by which HDACs control the hematopoietic stem cell fate, particularly in the erythroid lineage

    Recent advances in the pathophysiology of PIEZO1-related hereditary xerocytosis

    No full text
    International audienceHereditary xerocytosis is a rare red blood cell disease related to gain-of-function mutations in the FAM38A gene, encoding PIEZO1, in 90% of cases; PIEZO1 is a broadly expressed mechano-transducer that plays a major role in many cell systems and tissues that respond to mechanical stress. In erythrocytes, PIEZO1 adapts the intracellular ionic content and cell hydration status to the mechanical constraints induced by the environment. Until recently, the pathophysiology of hereditary xerocytosis was mainly believed to be based on the ``PIEZO1-Gardos channel axis'' in erythrocytes, according to which PIEZO1-activating mutations induce a calcium influx that secondarily activates the Gardos channel, leading to potassium and water efflux and subsequently to red blood cell dehydration. However, recent studies have demonstrated additional roles for PIEZO1 during early erythropoiesis and reticulocyte maturation, as well as roles in other tissues and cells such as lymphatic vessels, hepatocytes, macrophages and platelets that may affect the pathophysiology of the disease. These findings, presented and discussed in this review, broaden our understanding of hereditary xerocytosis beyond that of primarily being a red blood cell disease and identify potential therapeutic targets

    A proteomic study of the downregulation of TRIM37 on chondrocytes: Implications for the MULIBREY syndrome

    No full text
    International audienceMULIBREY nanism which results from autosomal recessive mutations in TRIM37 impacts skeletal development, leading to growth delay with complications in multiple organs. In this study, we employed a combined proteomics and qPCR screening approach to investigate the molecular alterations in the CHON-002 cell line by comparing CHON-002 wild-type (WT) cells to CHON-002 TRIM37 knockdown (KD) cells. Our proteomic analysis demonstrated that TRIM37 depletion predominantly affects the expression of extracellular matrix proteins (ECM). Specifically, nanoLC-MS/MS experiments revealed an upregulation of SPARC, and collagen products (COL1A1, COL3A1, COL5A1) in response to TRIM37 KD. Concurrently, large-scale qPCR assays targeting osteogenesis-related genes corroborated these dysregulations of SPARC at the mRNA level. Gene ontology enrichment analysis highlighted the involvement of dysregulated proteins in ECM organization and TGF-β signaling pathways, indicating a role for TRIM37 in maintaining ECM integrity and regulating chondrocyte proliferation. These findings suggest that TRIM37 deficiency in chondrocytes change ECM protein composition and could impairs long bone growth, contributing to the pathophysiology of MULIBREY nanism

    A Combination of Cytokines Rescues Highly Purified Leukemic CLL B-Cells from Spontaneous Apoptosis <i>In Vitro</i>

    Get PDF
    <div><p>B-chronic lymphocytic leukemia (B-CLL), the most common human leukemia, is characterized by predominantly non-dividing malignant mature CD5+ B lymphocytes with an apoptosis defect. Various microenvironmental stimuli confer a growth advantage on these leukemic cells and extend their survival <i>in vivo</i>. Nevertheless, when cultured <i>in vitro</i>, CLL B-cells rapidly die from apoptosis. Certain cytokines may extend the survival capacity of CLL B-cells <i>in vitro</i> and individual anti-apoptotic effects of several cytokines have been reported. The potential cumulative effect of such cytokines has not been studied. We therefore investigated the effects on CLL B-cells survival <i>in vitro</i> of humoral factors, polyclonal lymphocyte activators and a combination of cytokines known for their anti-apoptotic effects. Purified CLL B-cells were cultured in the presence or absence of various soluble molecules and the leukemic cell response was assessed in terms of viability. Apoptotic cell death was detected by flow cytometry using annexinV and 7-amino-actinomycin. The survival of CLL B-cells <i>in vitro</i> was highly variable. When tested separately, cytokines (IL-2, -6, -10, -12, -15, -21, BAFF and APRIL) improved CLL B cell survival moderately; in combination, they significantly enhanced survival of these cells, even up to 7 days of culture. We also report that humoral factors from autologous serum are important for survival of these malignant cells. Our findings support the concept that the CLL microenvironment is critical and suggest that soluble factors may contribute directly to the prolonged survival of CLL B-cells. Therefore, the combination of cytokines we describe as providing strong resistance to apoptosis <i>in vitro</i> might be used to improve the treatment of CLL.</p> </div

    CLL B-cells migrate from the peripheral blood to lymph nodes or bone marrow to receive the appropriate signals for their growth and survival.

    No full text
    <p>The peripheral blood of CLL patients contains various cytokines that can protect CLL B-cells from apoptosis. When CLL B-cells travel into lymph nodes or bone marrow, they make contact with various cells in the microenvironment (dendritic cells, stromal cells, T cells and Nurse-like cells), the cytokines produced by them, and various antigens that are able to promote CLL B-cell survival.</p

    The pro-survival effect of PMA, IL-4 and a cytokine cocktail is sustained for 7 days of culture.

    No full text
    <p><b>A.</b> Apoptosis was evaluated after 24, 48, 72 and 168 hours of culture by annexin V–PE/7-AAD staining and flow cytometry. The survival of B-CLL cells in the presence of PMA or IL-4 or cytokine cocktail was greater than that of controls for up to 168 h. Lower panel: Cytometry plots from a representative patient at 168 h. Upper panel: The values reported are means ± SEM for 9 independent experiments, each performed in duplicate. <b>B.</b> 10<sup>6</sup> purified B-CLL cells/well were cultured in 24-well plates in 1 ml of RPMI 1640 complete medium in the presence of PMA or IL-4 or the cytokine cocktail. Changes in viable cell number were assessed (counted in duplicate) by a trypan blue exclusion method after 24, 48, 72 and 168 hours of culture. The values reported are means ± SEM for 9 independent experiments. The significance of differences was calculated with the Wilcoxon test: <sup>*</sup>p<0.05 <sup>**</sup>p<0.01. Red asterisks for PMA versus Medium, clear blue asterisks for Cc versus Medium and indigo asterisks for IL-4 versus Medium.</p

    Rescuing SLAMF3 Expression Restores Sorafenib Response in Hepatocellular Carcinoma Cells through the Induction of Mesenchymal-to-Epithelial Transition

    No full text
    International audienceSimple Summary Sorafenib is a treatment for advanced HCC which demonstrated a poor objective response rate due to important induction of resistance. We demonstrated that induction of acquired-resistance to sorafenib in Huh-7 cell line leads to the loss of SLAMF3 expression, a tumor suppressor receptor in HCC. In these cells, the sorafenib-resistant phenotype is characterized by the increase of aggressiveness and induction of the epithelial-to-mesenchymal transition. Acquired-resistance to sorafenib induce a multipotent mesenchymal stem cells characteristic. Interestingly, SLAMF3 overexpression reversed the epithelial-to-mesenchymal transition and decreased metastatic potential in sorafenib-resistant cells through the control of ERK1/2 and mTOR signaling pathways. SLAMF3 seems to be a theranostics tools to the management of sorafenib treatment. Background: Acquired resistance to sorafenib in hepatocellular carcinoma (HCC) patients results in poor prognosis. Epithelial-to-mesenchymal transition (EMT) is the major mechanism implicated in the resistance to sorafenib. We have reported the tumor suppressor role of SLAMF3 (signaling lymphocytic activation molecules family 3) in HCC progression and highlighted its implication in controlling the MRP-1 transporter activity. These data suggest the implication of SLAMF3 in sorafenib resistance mechanisms. Methods: We evaluated the resistance to sorafenib in Huh-7 cells treated with progressive doses (Res cells). We investigated the link between acquired resistance to sorafenib and SLAMF3 expression by flow cytometry and Western blot methods. Furthermore, we analyzed the EMT and the stem cell potential of cells resistant to sorafenib. Results: Sorafenib resistance was confirmed in Res cells by analyzing the cell viability in the presence of sorafenib. The mesenchymal transition, in Res cells, was confirmed by high migratory index and the expression of EMT antigens. Interestingly, we found that loss of SLAMF3 expression corresponded to sorafenib-resistant phenotypes. The overexpression of SLAMF3 reversed EMT, decreased metastatic potential and inhibited mTOR/ERK1/2 in Res cells. Conclusions: We propose that rescuing SLAMF3 expression in resistant cells could represent a potential therapeutic strategy to enhance sorafenib efficacy in HCC patients

    Orai3-Mediates Cisplatin-Resistance in Non-Small Cell Lung Cancer Cells by Enriching Cancer Stem Cell Population through PI3K/AKT Pathway

    No full text
    International audienceSimple Summary Lung cancer is recognized for having a very poor prognosis with an overall survival rate of 5-years not exceeding 15%. Platinum-doublet therapy is the most current chemotherapeutic treatment used to treat lung tumors. However, resistance to such drugs evolves rapidly in patients with non-small cell lung cancer (NSCLC) and is one of the major reasons behind therapy failure. Tumor recurrence due to chemoresistance is mainly attributed to the presence of cancer stem cells (CSCs) subpopulations. Thus, the identification of resistance actors and markers is necessary. The Orai3 channel has been recently identified as a predictive marker of metastasis and survival in resectable NSCLC tumors. Our results show, for the first time, that the Orai3 channel is able to induce chemoresistance by enriching CSCs population. Our findings present Orai3 as a promising predictive biomarker which could help with selecting chemotherapeutic drugs. The development of the resistance to platinum salts is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). Among the reasons underlying this resistance is the enrichment of cancer stem cells (CSCs) populations. Several studies have reported the involvement of calcium channels in chemoresistance. The Orai3 channel is overexpressed and constitutes a predictive marker of metastasis in NSCLC tumors. Here, we investigated its role in CSCs populations induced by Cisplatin (CDDP) in two NSCLC cell lines. We found that CDDP treatment increased Orai3 expression, but not Orai1 or STIM1 expression, as well as an enhancement of CSCs markers. Moreover, Orai3 silencing or the reduction of extracellular calcium concentration sensitized the cells to CDDP and led to a reduction in the expression of Nanog and SOX-2. Orai3 contributed to SOCE (Store-operated Calcium entry) in both CDDP-treated and CD133(+) subpopulation cells that overexpress Nanog and SOX-2. Interestingly, the ectopic overexpression of Orai3, in the two NSCLC cell lines, lead to an increase of SOCE and expression of CSCs markers. Furthermore, CD133(+) cells were unable to overexpress neither Nanog nor SOX-2 when incubated with PI3K inhibitor. Finally, Orai3 silencing reduced Akt phosphorylation. Our work reveals a link between Orai3, CSCs and resistance to CDDP in NSCLC cells
    corecore