14 research outputs found

    Radionuclides in fruit systems: Model prediction-experimental data intercomparison study

    No full text
    This paper presents results from an international exercise undertaken to test model predictions against an independent data set for the transfer of radioactivity to fruit. Six models with various structures and complexity participated in this exercise. Predictions from these models were compared against independent experimental measurements on the transfer of 134Cs and 85Sr via leaf-to-fruit and soil-to-fruit in strawberry plants after an acute release. Foliar contamination was carried out through wet deposition on the plant at two different growing stages, anthesis and ripening, while soil contamination was effected at anthesis only. In the case of foliar contamination, predicted values are within the same order of magnitude as the measured values for both radionuclides, while in the case of soil contamination models tend to under-predict by up to three orders of magnitude for 134Cs, while differences for 85Sr are lower. Performance of models against experimental data is discussed together with the lessons learned from this exercise. © 2005 Elsevier B.V. All rights reserved

    Radionuclides in fruit systems: model-model intercomparison study.

    No full text
    Modeling is widely used to predict radionuclide distribution following accidental radionuclide releases. Modeling is crucial in emergency response planning and risk communication, and understanding model uncertainty is important not only in conducting analysis consistent with current regulatory guidance, but also in gaining stakeholder and decision-maker trust in the process and confidence in the results. However, while methods for dealing with parameter uncertainty are fairly well developed, an adequate representation of uncertainties associated with models remains rare. This paper addresses uncertainty about a model\u2019s structure (i.e., the relevance of simplifying assumptions and mathematical equations) that is seldom addressed in practical applications of environmental modeling. The use of several alternative models to derive a range of model outputs or risks is probably the only available technique to assess consistency in model prediction. Since each independent model requires significant resources for development and calibration, multiple models are not generally applied to the same problem. This study uses results from one such model intercomparison conducted by the Fruits Working Group, which was created under the International Atomic Energy Agency (IAEA) BIOMASS (BIOsphere Modelling and ASSessment) Program. Model\u2013model intercomparisons presented in this study were conducted by the working group for two different scenarios (acute or continuous deposition), one radionuclide (137Cs), and three fruit-bearing crops (strawberries, apples, and blackcurrants). The differences between models were as great as five orders of magnitude for short-term predictions following acute radionuclide deposition. For long-term predictions and for the continuous deposition scenario, the differences between models were about two orders of magnitude. The difference between strawberry, apple, and blackcurrant contamination predicted by one model is far less than the difference in prediction of contamination for a single plant species given by different models. This study illustrates the importance of problem formulation and implementation of an analytic-deliberative process in risk characterization

    Modelling and experimental studies on the transfer of radionuclides to fruit

    No full text
    Although fruit is an important component of the diet, the extent to which it contributes to radiological exposure remains unclear, partially as a consequence of uncertainties in models and data used to assess transfer of radionuclides in the food chain. A Fruits Working Group operated as part of the IAEA BIOMASS (BIOsphere Modelling and ASSessment) programme from 1997 to 2000, with the aim of improving the robustness of the models that are used for radiological assessment. The Group completed a number of modelling and experimental activities including: (i) a review of experimental, field and modelling information on the transfer of radionuclides to fruit; (ii) discussion of recently completed or ongoing experimental studies; (iii) development of a database on the transfer of radionuclides to fruit; (iv) development of a conceptual model for fruit and (v) two model intercomparison studies and a model validation study. The Group achieved significant advances in understanding the processes involved in transfer of radionuclides to fruit. The work demonstrated that further experimental and modelling studies are required to ensure that the current generation of models can be applied to a wide range of scenarios

    Transfer of radionuclides to fruits: The activities of the biomass fruits working group

    No full text
    Given the potential radiological significance of the transfer of radionuclides to fruit, a Fruits Working Group was set up in 1997 within the framework of the Programme on BIOsphere Modelling and ASSessment (BIOMASS), promoted by the International Atomic Energy Agency (IAEA) and in co-operation with the International Union of Radioecology (IUR). The aim of this working group was to improve understanding of the processes affecting the migration of radionuclides in fruit systems and to identify uncertainties associated with modelling the transfer of radionuclides to fruit. The main activities of the Fruits Working Group included : (i) a review of experimental, field and modelling information on the transfer of radionuclides to fruit ; (ii) a derivation of a fruit conceptual model ; (iii) a database of model parameters ; (iv) a collection of additional information from experimental studies ; (v) model intercomparison studies ; and (vi) a validation study. This paper presents an overview of the main activities and results

    A review of measurement and modelling results of particle atmosphere–surface exchange

    No full text
    Atmosphere–surface exchange represents one mechanism by which atmospheric particle mass and number size distributions are modified. Deposition velocities (vd) exhibit a pronounced dependence on surface type, due in part to turbulence structure (as manifest in friction velocity), with minima of approximately 0.01 and 0.2 cm s−1 over grasslands and 0.1–1 cm s−1 over forests. However, as noted over 20 yr ago, observations over forests generally do not support the pronounced minimum of deposition velocity (vd) for particle diameters of 0.1–2 ÎŒm as manifest in theoretical predictions. Closer agreement between models and observations is found over less-rough surfaces though those data also imply substantially higher surface collection efficiencies than were originally proposed and are manifest in current models. We review theorized dependencies for particle fluxes, describe and critique model approaches and innovations in experimental approaches, and synthesize common conclusions of experimental and modelling studies. We end by proposing a number of research avenues that should be pursued in to facilitate further insights and development of improved numerical models of atmospheric particles
    corecore