1,330 research outputs found
In Government We Trust: The Role of Fiscal Decentralization
We measure the contribution of fiscal decentralization to trust in government. Using repeated cross-country survey data of individuals on several measures of trust in govern- ment over the 1994-2007 period, we estimate an ordered response model of the government trust and fiscal decentralization nexus. We control for unobserved country characteristics, macroeconomic determinants, and individual characteristics. Our main finding is that fiscal decentralization increases trust in government. More specifically, a one percentage point increase in fiscal decentralization causes roughly a four-fifths of a percentage point increase in government trust. The beneficial effect of fiscal decentralization on trust in government is neither limited to nor necessarily large for relatively decentralized countries.Fiscal Decentralization;Government Trust;Social Capital
Compression of sub-relativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction
We demonstrate compression of 95 keV, space-charge-dominated electron bunches
to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are
of sufficient quality to capture a diffraction pattern with a single shot,
which we demonstrate by a diffraction experiment on a polycrystalline gold
foil. Compression is realized by means of velocity bunching as a result of a
velocity chirp, induced by the oscillatory longitudinal electric field of a 3
GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs
Recommended from our members
Decay of the supersonic turbulent wakes from micro-ramps
The wakes resulting from micro-ramps immersed in a supersonic turbulent boundary layer at Ma = 2.0 are investigated by means of particle image velocimetry. Two micro-ramps are investigated with height of 60% and 80% of the undisturbed boundary layer, respectively. The measurement domain is placed at the symmetry plane of the ramp and encompasses the range from 10 to 32 ramp heights downstream of the ramp. The decay of the flow field properties is evaluated in terms of time-averaged and root-mean-square (RMS) statistics. In the time-averaged flow field, the recovery from the imparted momentum deficit and the decay of upwash motion are analyzed. The RMS fluctuations of the velocity components exhibit strong anisotropy at the most upstream location and develop into a more isotropic regime downstream. The self-similarity properties of velocity components and fluctuation components along wall-normal direction are followed. The investigation of the unsteady large scale motion is carried out by means of snapshot analysis and by a statistical approach based on the spatial auto-correlation function. The Kelvin-Helmholtz (K-H) instability at the upper shear layer is observed to develop further with the onset of vortex pairing. The average distance between vortices is statistically estimated using the spatial auto-correlation. A marked transition with the wavelength increase is observed across the pairing regime. The K-H instability, initially observed only at the upper shear layer also begins to appear in the lower shear layer as soon as the wake is elevated sufficiently off the wall. The auto-correlation statistics confirm the coherence of counter-rotating vortices from the upper and lower sides, indicating the formation of vortex rings downstream of the pairing region
Recommended from our members
Numerical and experimental investigations of the supersonic microramp wake
The flow past a microramp immersed in a supersonic turbulent boundary layer is studied by means of numerical simulations with the implicit large-eddy simulation technique and experiments conducted with tomographic particle image velocimetry. The experimental data are mostly used to verify the validity of the numerical results by ample comparisons on the time-averaged velocity, turbulent statistics, and vortex intensity. Although some discrepancies are observed on the intensity of the upwash motion generated by the streamwise vortex pair, the rates of the recovery of momentum deficit and the decay of streamwise vortex pair intensity are found in good agreement. The instantaneous flow organization is inspected, making use of the flow realizations available from implicit large-eddy simulation. The flow behind the microramp exhibits significant large-scale unsteady fluctuations. Notably, the quasi-conical shear layer enclosing the wake is strongly undulated under the action of Kelvin–Helmholtz (K–H) vortices. The resulted vortices induce localized high-speed arches in the outer region and a deceleration within the wake associated with ejection of low-momentum fluid. Because of the presence of the K–H vortex, the streamwise vortex filaments exhibit downward and outward motions. The further evolution of vortical structures within the wake features the development of K–H vortices from arch shape to full ring in the far wake, under the effects of the streamwise vortices, which induce an inward motion of the vortex legs and eventually connect the vortex at the bottom
New electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range
We present a method for producing sub-100 fs electron bunches that are
suitable for single-shot ultrafast electron diffraction experiments in the 100
keV energy range. A combination of analytical results and state-of-the-art
numerical simulations show that it is possible to create 100 keV, 0.1 pC, 20 fs
electron bunches with a spotsize smaller than 500 micron and a transverse
coherence length of 3 nm, using established technologies in a table-top set-up.
The system operates in the space-charge dominated regime to produce
energy-correlated bunches that are recompressed by established radio-frequency
techniques. With this approach we overcome the Coulomb expansion of the bunch,
providing an entirely new ultrafast electron diffraction source concept
Clinical predictors of seizure threshold in electroconvulsive therapy: a prospective study
At the start and during the course of electroconvulsive therapy (ECT), estimation of the seizure threshold (ST) is useful in weighing the expected effectiveness against the risks of side effects. Therefore, this study explores clinical factors predicting initial ST (IST) and levels of ST during the ECT course. This prospective observational study included patients aged ≥18 years receiving ECT without contraindications for dose titration. At the first and every sixth consecutive ECT session, ST level was measured. Using multivariate linear regression and multilevel models, predictors for IST and change in ST levels were examined. A total of 91 patients (mean age, 59.1 ± 15.0 years; 37 % male; 97 % diagnosis of depression) were included. In multivariable analysis, higher age (β = 0.24; P = 0.03) and bifrontotemporal (BL) electrode placement (β = 0.42; P < 0.001) were independent predictors for higher IST, explaining 49 % of its variation. Also, these two variables independently predicted higher ST levels at different time points during the course. Using multilevel models, absence of a previous ECT course(s) predicted a steeper rise in ST during the course (P = 0.03 for the interaction term time*previous ECT). The age-adjusted dose-titration method is somewhat crude, resulting in some measurement error. Concomitant medication use could have influenced ST levels. Increasing age and BL electrode placement predicted higher (I)ST, which should be taken into account when selecting ECT dosage. Previous ECT course(s) may avoid an increase in ST during the course of ECT
Incipient Separation in Shock Wave Boundary Layer Interactions as Induced by Sharp Fin
The incipient separation induced by the shock wave turbulent boundary layer
interaction at the sharp fin is the subject of present study. Existing theories
for the prediction of incipient separation, such as those put forward by McCabe
(1966) and Dou and Deng (1992), can have thus far only predicting the direction
of surface streamline and tend to over-predict the incipient separation
condition based on the Stanbrook's criterion. In this paper, the incipient
separation is firstly predicted with Dou and Deng (1992)'s theory and then
compared with Lu and Settles (1990)' experimental data. The physical mechanism
of the incipient separation as induced by the shock wave/turbulent boundary
layer interactions at sharp fin is explained via the surface flow pattern
analysis. Furthermore, the reason for the observed discrepancy between the
predicted and experimental incipient separation conditions is clarified. It is
found that when the wall limiting streamlines behind the shock wave becomes\
aligning with one ray from the virtual origin as the strength of shock wave
increases, the incipient separation line is formed at which the wall limiting
streamline becomes perpendicular to the local pressure gradient. The formation
of this incipient separation line is the beginning of the separation process.
The effects of Reynolds number and the Mach number on incipient separation are
also discussed. Finally, a correlation for the correction of the incipient
separation angle as predicted by the theory is also given.Comment: 34 pages; 9 figure
On POD analysis of PIV measurements applied to mixing in a stirred vessel with a shear thinning fluid
P.O.D. technique is applied to 2D P.I.V. data in the field of hydrodynamics in a mixing tank with a Rushton turbine and a shear thinning fluid. Classical eigen-value spectrum is presented and phase portrait of P.O.D. coefficients are plotted and analyzed in terms of trailing vortices. A spectrum of dissipation rate of kinetic energy is introduced and discussed. Length scales associated to each P.O.D. modes are proposed
- …
