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P.O.D. technique is applied to 2D P.I.V. data in the field of hydrodynamics in a  mixing tank with a Rushton turbine

and  a  shear thinning fluid. Classical eigenvalue spectrum is presented and phase portrait of P.O.D. coefficients are

plotted  and analyzed in terms of trailing vortices. A spectrum of dissipation rate of kinetic energy is introduced and

discussed.  Length scales associated to  each P.O.D. modes are  proposed.

             

Keywords: Mixing; Particle image velocimetry; Proper orthogonal decomposition; Eigenvalue spectrum; Dissipation

rate;  Stirred tank

1.  Introduction

Advanced experimental techniques such as  particle image

velocimetry (P.I.V.) are available nowadays, and they generate a

huge amount of data, in terms of instantaneous velocity fields

(in  a  plane as  far  as 2D P.I.V. is concerned). Indeed, advanced

data  processing tools are required to extract more and more

information  from this source of experimental data. Proper

orthogonal decomposition (P.O.D.) or Karhunen–Loeve method

that  is known to be efficient to isolate coherent structures from

a  series of instantaneous velocity fields (Berkooz et al., 1993)

will  be used in this paper. P.O.D. is a modal decomposition of

instantaneous  velocity fields, the modes being orthogonal to

each others. It can be  expressed as:

−→
Vk(x, y,  z, t) =

N
∑

I=1

−→
V

(I)
k

(x,  y,  z, t)  =

N
∑

I=1

a
(I)
k

(t)
−→
˚(I)(x, y,  z)  (1)

where
−→
Vk is the kth instantaneous event of velocity field

measurement and
−→
V

(I)
k

is the Ith component of the P.O.D.
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decomposition. For each mode I, the P.O.D. method generates

temporal  coefficients a
(I)
k

and spatial modes
−→
˚(I). a

(I)
k

(t) is an

instantaneous (k) or temporal (t)  scalar (called P.O.D. coefficient

of  P.O.D. mode I); it is independent of space.
−→
˚(I)(x, y,  z)  is  a  spa

tial  eigenfunction of mode I and it  is independent of time (or

instantaneous  event k). Modes can be derived from the Fred

holm  eigenvalue integral equation, adapted by Sirovich (1987)

as:

∫ ∫

˝

R(x, y,  z, x′, y′, z′)
−→
˚(I)(x′, y′, z′)  dx′ dy′ dz′ =  �(I)

−→
˚(I)(x, y, z)  (2)

where R  is  the crosscorrelation tensor and �(I) is the eigenval

ues.  Following this approach, the eigenvalues are expressed

in  m5/s2 in a  full 3D analysis. Indeed, one can point out that

the  dimension corresponds to a kinetic energy (m2/s2)  times

a  volume (dx dy dz). In 2D PIV problem, the eigenvalues are

expressed  in  m4/s2, corresponding to  a  kinetic energy (m2/s2)

times  a surface (dx dz).  Usually eigenvalue sequences are

ranked  in  decreasing order. Clearly, this ordering of eigenval

ues  ensures that the first P.O.D. modes are the most energetic.



Given its eigenvalue, �(1) and its eigenfunction
−→
˚(I)(x,  y,  z),

it  is possible to reconstruct the velocity field associated to

the  mode 1 (
−−→
V

(1)
k

(x,  y, z, t)) which will be confirmed to repre

sent  the mean flow. Considering modes 2 and 3, Oudheusden

et  al. (2005) have shown that, when their P.O.D. eigenval

ues  are close to each other, the POD modes are coupled:

usually, they correspond to  orthogonal components of a peri

odic  process (coherent structures induced by the blades of

the  impeller). Higher modes correspond to  lower eigenval

ues  that are associated to smaller scale structures. Knight

and  Sirovich (1990) have shown that the eigenvalue spec

trum  (plot of eigenvalues versus mode number I) exhibit I−11/9

trend in the  inertial subrange of turbulence. This trend was

confirmed  by De Angelis et al. (2003) and Hoisiadas et al.

(2005)  (among others). The analysis of the different modes

will  be addressed in this  paper, in  the field of mixing in a

stirred  tank with a  Rushton turbine and a shear thinning fluid.

In  addition, a  spectrum of dissipation rate of kinetic energy

associated to each mode I, similar to the spectrum of eigen

values,  will be presented and discussed. Characteristic length

scales  (wave length) associated to each mode will be also

proposed.

As  highlighted by many authors, P.O.D. eigenfunctions

present flowfieldlike structures and their analysis must be

driven with care. However, the significance of P.O.D. modes can

become clearer by  the  detailed analysis of P.O.D. coefficients

a
(I)
k

. Some relation between two modes I  and J can be tracked

down  by plotting the  two coefficients series [a
(I)
k

, a
(J)
k

], k  = 1, N

in  the (a(I), a(J)) plane. Such a  plot is called a  2D projection of

the  phase portrait. Hydrodynamic coherent structures can be

revealed when characteristic patterns appear in this plane,

such  as circle, ellipse or Lissajous figures that can be  asso

ciated  to periodic or intermittent structures. In particular,

circular shapes can suggest cyclic variations of modes I and

J  related to  vortices or coherent structures. In this  case, (a(I),

a(J))  series can be modeled as sine–cosine functions with same

period.  Such phase portraits will be plotted in this paper in

order  to emphasize the coupling between modes 2 and 3,

associated  to trailing vortices generated by the blades of the

impeller.

P.O.D.  was applied to hydrodynamics in mixing tank by

Moreau  and Liné  (2006), Doulgerakis (2010), and Gabelle et al.

(2013). Snapshot P.O.D. studies were reviewed by Tabib and

Joshi  (2008) in the field of Chemical Engineering. The goal

of  this paper is to contribute to  extract information from

2D  P.I.V. data  by P.O.D. technique in the field of mixing.

Classical P.O.D. data processing is performed in terms of

eigenvalue  problem, spectrum of eigenvalues and phase por

trait  analysis. New data processing is proposed in terms

of  dissipation rates and wavelengths associated to each

mode  I.

2.  Materials  and  methods

2.1.  Mixing  tank

2DP.I.V. measurements were performed in a  70  L stirred tank

equipped  with four equally spaced baffles. A Rushton turbine

(D/T  =  0.33) was used. The vessel was standard (T  = 0.45 m);

the  impeller clearance was C = T/3. More information about

the  mixing tank dimensions is  provided in Gabelle et  al.

(2013).

Fig. 1  – Apparent viscosity of Zetag7587 solutions versus

shear  rate.

2.2.  P.I.V.  system

The P.I.V. system used in this study consisted of a  laser and

an  image acquisition system provided by LaVision (LaVision

GmbH,  Goettingen, Germany). The system included a  laser

NdYag  (Quantel, 10  Hz, 200  × 2 mJ), a  synchronization system

and  a  chargecoupleddevice (CCD) camera (Imager Intense, 12

bits,  1376 × 1040 pixels). Fast Fourier transform (FFT) cross cor

relation  was used  to interrogate the two images, which were

divided  into interrogation area (32 ×  32 or 16  × 16 pixels). For

all  experiments, 500–700 image pairs were recorded and sta

tistical  convergence of the  velocity was checked. In order to

study  the influence of spatial resolution on the vicinity of the

impeller,  two spatial resolutions 1x  (0.7–1 mm) were tested.

The  delay between each frame in  an image pair was chosen

in  relation to the impeller rotational speed. Four zones in  the

vessel  were investigated: one in the impeller steam, two above

and  one below. POD was only carried out for the image at the

impeller  level.

2.3.  Working  fluid

The shear thinning fluid Zetag7587 (BASF, Ludvigshafen,

Germany) was used. It offers good transparency even at high

concentration (0.4%). Rheological measurements were car

ried  out using a  Haake Mars III  rheometer (ThermoHaake,

Germany). Flow curves of Zetag7587 solutions are  presented

in  Fig. 1 for shear rates ranging from 0.001 to 1000 s−1. Rhe

ological  data can be fitted to the model of Ostwald de Waele

(power  law) according to:

�a = K
∣

∣̇
∣

∣

n−1
(3)

with K the fluid consistency factor and n the flow index. The

rheological  parameters are reported in Table 1. Zetag7587 is

known to  be viscoelastic (Escudier and Smith, 2001). However,

the  choice of Zetag7587 at a  high  concentration 0.4% was made

because  at high concentration the viscosity is  high; it is  thus

easier  to measure turbulent flow characteristics close to the

impeller,  the turbulent microscales being larger at relatively



Table 1 –  Rheological parameters fitted to  the power law
equation.

Fluid n K (Pa sn) Shear rate
range (s−1)

Zetag7587 0.1% 0.422 0.30 1–350

Zetag7587 0.2% 0.376 0.74 1–600

Zetag7587 0.4% 0.349 1.65 1–1000

low Reynolds number and the spatial resolution of PIV mea

surement  needed to catch the physics being larger.

2.4.  Experimental  conditions

The  impeller speed N is  205 rpm. The global shear rate ̇MO is

estimated  from Metzner–Otto correlation:

̇MO =  kSN (4)

where the constant kS depends on the impeller type

(kS =  11.5 for a  Rushton turbine). The shear rate is thus  equal

to  40 s−1. Given the rheological law of the shear thinning

fluid, the apparent viscosity is 0.15 Pa s. The Reynolds num

ber  is  thus equal to 530, corresponding to the transition region

between  laminar and turbulent regime. The volume averaged

value  of the dissipation rate of kinetic energy 〈ε〉 can be esti

mated;  it  is equal to 〈ε〉 = 0.2 m2/s3 or W/kg. The associated

value of global shear rate is 〈〉 = 37 s−1.  Indeed, the flow is

turbulent close to the impeller and less and less  turbulent far

from  it. The P.I.V. data were acquired in a  domain close to the

impeller  tip  (6 cm × 6 cm), ensuring turbulent flow conditions

as  it will be shown in the results presentation and discussion.

3.  Data  processing

Proper orthogonal decomposition (P.O.D.) is a linear procedure,

which  decomposes a set of instantaneous velocity fields into

a  modal base (see Section 3.1). We propose in  this work to

investigate  P.O.D. in terms of reconstruction of instantaneous

velocity fields in  a  mixing tank. This methodology allows

separating the organized and the turbulent motions with

out  the  necessity to collect angular phased data (Moreau and

Liné,  2006). POD is carried out using snapshot method with

all  the sets of instantaneous velocity fields directly issued

from  the measurements. The result is then an orthonor

mal  basis of eigenfunctions and associated eigenvalues. The

instantaneous  velocity field can be projected on each POD

eigenfunction. From these projections it  is  possible to get

P.O.D.  coefficients and to  reconstruct the velocity field (see Sec

tion 3.2). Dissipation rate of kinetic energy can be estimated

from  the 2D velocity field (Section 3.3). Finally, characteristic

length  scales may also be determined from the PIV experi

ments.

3.1.  Snapshot  method

P.I.V. measurements are  performed in the  (x,z) plane, on a regu

lar  mesh with L rows and C columns, leading to  NP = L C points

per  plane. Each instantaneous velocity field measurement

constitutes a  snapshot of the flow. The statistical analysis is

performed on N snapshots taken in  the same plane (P.I.V. data).

The  number of grid points being LC, one obtains the matrix of

instantaneous  velocity vector data as:

−−→
V

(1)
k

x =













−→
Vk(x1, z1)

−→
Vk(x1, z2)

−→
Vk(x1, zC)

−→
Vk(x2,  z1)

−→
Vk(x2, z2)

−→
Vk(x2, zC)

−→
Vk(xL, z1)

−→
Vk(xL, z2)

−→
Vk(xL, zC)













(5)

where k  is the index of the instantaneous event (k  = 1,N). This

matrix  of vectors can be reshaped to  build a  vector
−→
Vk with 2LC

rows  as  follows:

−→
Vk =

































uk(x1, z1)

uk(x2, z1)

uk(xL, zC)

wk(x1, z1)

wk(x2, z1)

wk(xL, zC)

































(6)

The snapshot method adopted in this eigenvalue problem

was  proposed by  Sirovich (1987). This method is based on

the  snapshot matrix M corresponding to the N instantaneous

velocity fields. The matrix M  can be expressed as

M  =

































u1(x1, z1)  u2(x1, z1)  ... uN(x1, z1)

u1(x2,  z1)  u2(x2, z1)  ... uN(x2, z1)

...

u1(xL,  zC) u2(xL, zC) ... uN(xL, zC)

w1(x1,  z1) w2(x1, z1) ... wN(x1, z1)

w1(x2,  z1) w2(x2, z1) ... wN(x2, z1)

...

w1(xL, zC)  w2(xL, zC)  ... wN(xL, zC)

































(7)

The matrix M has  2LC rows and N columns, each column of

the  matrix M representing the  kth event of the instantaneous

velocity field. The autocovariance tensor R  can be derived as:

R  =
1

N
M.MT =







u2(x1, z1)

.  .  .

w2(xL, zC)







(8)

The Fredholm integral eigenvalue problem is  represented

in  the 2D domain  ̋ of measurement by:

∫ ∫

˝

R (x, z, x′, z′)
−→
˚(I) (x′, z′) dx′dz′ =  �(I)

−→
˚(I) (x, z) (9)

where �(I) is the Ith eigenvalue and
−→
˚(I)x(x, z)  is the Ith  asso

ciated  eigenfunction. The correlation tensor can be expressed

in  the orthonormal basis as a  diagonal matrix. The eigen

values  of R, �
(I)
R ,  are  expressed in m2/s2 and are  defined as:

�
(I)
R = �(I)/(dx dz).

The dimension of M .  MT matrix is (2LC)2 whereas the

dimension of MT .  M  matrix is N2. The eigenfunctions of M  .  MT



are
−→
˚(I)(x,  z);  they can be simply related to the eigenvalues of

MT .  M,  noted
−−→
˚′(I)(x, z), as:

−−→
˚′(I)(x,  z)  = MT

−→
˚(I)(x, z) or

−→
˚(I)(x,  z) = M

−−→
˚′(I)(x, z) (10)

This must be kept in mind in order to  save computing time

since  M.MT and  MT.M have identical eigenvalues, but may have

significantly  different sizes if N2 ≪ (2LC)2. In addition, the spa

tial  modes constitute an orthonormal basis, thus:

−→
˚(I).

−→
˚(J) = ıIJ (11)

3.2.  Modal  decomposition  of  the  velocity  field

Each instantaneous velocity field or snapshot of the flow can

be  expanded in a  series of P.O.D. modes. The P.O.D. coefficients

a
(I)
k

are  obtained by projecting each instantaneous velocity field

on  the Ith  eigenfunction
−→
˚(I):

a
(I)
k

=
−→
Vk.

−→
˚(I) (12)

The Ith velocity vector
−→
V

(I)
k

corresponding to the Ith  decompo

sition  is given by:

−→
V

(I)
k

=  a
(I)
k

−→
˚(I) (13)

One can thus reconstruct each instantaneous velocity field

given  by Eq. (1). One can easily derive:

1

N

N
∑

k=1

a
(I)
k

a
(J)
k

= �
(I)
R ıIJ (14)

This relation shows that each mode makes an independent

contribution to the total kinetic energy.

3.3.  Modal  decomposition  of  the  dissipation  rate  of

kinetic energy

The rate of viscous dissipation of kinetic energy is defined as:

ε =  2�aS : S (15)

where �a is the apparent viscosity of the fluid and S is the strain

rate  (or  stretching) tensor, defined as:

�(I) ∝ �−11/3 (16)

Considering the decomposition of the velocity field in  the

sum  of Ith components, one can associate to  each Ith  com

ponent  of the velocity V
(I)
i,k

a  component S
(I)
ij,k

of the strain rate

tensor:

S
(I)
ij,k

=
a

(I)
k

2
·

(

∂˚
(I)
i

∂xj
+

∂˚
(I)
j

∂xi

)

(17)

Accounting for Eqs. (11) and (14), one can thus derive the Ith

component  of  the rate of viscous dissipation of kinetic energy:

ε(I) = �a(  ̇)
�

(I)
R

2

3
∑

i=1

3
∑

j=1

(

∂˚
(I)
i

∂xj
+

∂˚
(I)
j

∂xi

)2

(18)

It  is interesting to realize that the total dissipation rate of

kinetic  energy is the sum of the Ith component of the rate of

viscous  dissipation of kinetic energy: ε(x, z, t)  =
∑N

I=1
ε(I)(x,  z, t).

Recall  that the eigenvalue I  is  independent of space. It repre

sents  the contribution of each mode to the total kinetic energy

in  the plane of measurement. One can also estimate the  dis

sipation  rate of kinetic energy
〈

ε(I)
〉

averaged in the plane:

〈

ε(I)
〉

=
1

LC

L
∑

l=1

C
∑

k=1

ε(I)(xl, zk) (19)

It  is thus possible to  draw a plot similar to the spectrum of

eigenvalues;  it  is  the spectrum of dissipation rate of kinetic

energy  (plot of dissipation rate
〈

ε(I)
〉

associated to mode I

versus  mode number I). This spectrum will be presented and

discussed.

In  addition, the strain rate of small scales of turbulence is

large  and can be expressed as  s′
ij

≈ u/�. Recalling Eq.  (17) and

considering  that the P.O.D. coefficient a
(I)
k

have the dimension

of  a velocity (m/s), the inverse of a  length scale could be asso

ciated  to the gradients of the eigenfunction
−→
˚(I).  This will be

analyzed  in depth in the discussion.

3.4.  Reshaped  eigenfunctions

The eigenfunctions are vectors with 2LC rows. These vectors

can  be reshaped to form a (L,C) matrix of local vectors:

−→
˚

(I)

k
=

























˚x,k(x1, z1)

˚x,k(x2, z1)

˚x,k(xL,  zC)
˚z,k(x1,  z1)

˚z,k(x2,  z1)

˚z,k(xL, zC)

























−→
˚

(I)

k
=









−→˚k(x1, z1) −→˚k(x1,  z2) −→˚k(x1, zC)

−→˚k(x2, z1) −→˚k(x2,  z2) −→˚k(x2, zC)

−→˚k(xL,  z1) −→˚k(xL, z2) −→˚k(xL, zC)









(20)

The reshaped eigenfunction can be plotted in the plane

(x,z).  It corresponds to  a  2D vector field, each vector −→
˚k(xi, zj)

having  a horizontal ˚x,k(xi, zj) and  a vertical ˚z,k(xi, zj) compo

nent.

3.5.  Comments  on  2D  P.I.V.  measurements

The flow field is 3D  in the mixing tank. However, the analysis

performed with  2DP.I.V. is  limited to  a  2D  plane of measure

ment.  In terms of mean flow, it is clear that the tangential flow

is  not measured nor taken into account in the present analy

sis.  Indeed, the goal of the study is  2folds: one the one hand,

it  is  to extract from the measurements the organized motion

induced  by  the  impeller rotation. It was shown in  previous

studies  (Moreau and Liné, 2006, among others) that POD can

enable  to decompose the organized motion from the instanta

neous  measurement, without collecting angular phased data.

It  was also shown by  many authors that 2D measurement in

a  vertical plane enable to extract trailing vortices induced by

a  Rushton turbine. One the other hand, the goal  of this study

is  to analyze turbulent scales. In terms of turbulence, it was

also  shown by  many authors that the measurement of instan

taneous  velocity field in  a  single plane of measurement was



 

sufficient to estimate the local dissipation rate of turbulent

kinetic energy as far as the spatial resolution of the PIV system

is  high enough. This is  related to the isotropy of smallest scales

of  turbulence coupled to  the efficiency of the mixing tank pro

cess.  Keeping this in mind, we must be aware of the fact that

the  tangential mean flow is not measured and that associated

large  scales are not measured too. In terms of POD analysis,

the  2D limitation of PIV measurements may affect the  largest

scales  of motion (intermediate modes of POD decomposition).

4.  Results

The eigenvalues correspond to the contribution of each mode

to  the total kinetic energy in  the 2D domain of measurement

(Section 4.1). Mode 1 is structurally close to  the mean (sta

tistical  average) velocity field (Section 4.2). When two of the

following  modes are close to  each other in terms of eigen

values,  the energy brought by these modes is the same. Such

modes  may reveal large scale coherent structures (Sections 4.4

and 4.5). Higher modes may be related to  turbulence (Sections

4.5  and 4.6).

4.1.  Eigenvalue  spectrum

The  eigenvalue spectrum is  plotted in Fig. 2. The eigenvalues

are  normalized by the sum of the eigenvalues; these normal

ized  eigenvalues correspond to  the contribution of each mode

Fig. 2  – Eigen value spectrum.

to  the total kinetic energy in the plane of measurement. One

can  see that the first mode explains more than 80% of the

total  kinetic energy; it is characteristic of mean flow contribu

tion.  One can observe that modes 2  and 3 and  modes 4 and  5

are  close to each other. They respectively contribute to 3–5%

and  0.6–0.8% of the total kinetic energy. The upper modes con

tribute  to lower levels of kinetic energy. One can notice that

Fig. 3 –  First POD mode (a) eigen function, (b) pdf of normalized POD coefficient, and (c) comparison of first mode to mean

flow.



upper modes follow a linear trend in log–log plot (−11/9); this

trend  will be explained later in the discussion.

4.2.  First  mode  analysis

The reshaped eigenfunction
−−→
˚(1)(x, z)  corresponding to mode

1  is plotted in  Fig. 3a. It looks like a  velocity field but it  is

not,  since the  eigenfunctions have no dimension. Indeed,

the  instantaneous velocity field associated to  the first mode

is  given by

−−→
V

(1)
k

(x,  z, t)  = a
(1)
k

(t)
−−→
˚(1)(x, z) (21)

for each k realization of the velocity. One can plot in Fig. 3b

the  probability density function of the coefficients a
(1)
k

. The

coefficients  a
(1)
k

were normalized by  the square root of the first

eigenvalue  �
(1)
R expressed in m2/s2.  The first remark is that

the  pdf is centered on the  unity value; the second remark is

the  dispersion of the N realizations a
(1)
k

is weak, meaning that

a
(1)
k

is almost constant. One can thus  reconstruct the velocity

field  associated to the first mode as:

−−→
V

(1)
k

(x,  z, t)  =

√

�
(1)
R

−−→
˚(1)(x, z) ∼= cst ∀k (22)

One can compare this  velocity field (reconstructed with

the  first mode) to the statistical average of the instantaneous

velocity field, classically defined as:

−→
V̄ (x,  z, t) =

1

N

N
∑

k=1

−→
Vkx(x,  z, t) (23)

The  vertical profile of the horizontal component of the

velocity field  reconstructed with the first mode
−−→
V

(1)
k

(x,  z, t) is

compared  to the vertical profile of the horizontal component

the  mean flow
−→
V̄ (x, z, t)  in Fig. 3c, at a  radial position close to

the  impeller tip. The two profiles are identical. One can thus

confirm  that the  velocity field associated to the first mode is a

steadystate field corresponding to the mean flow.

4.3.  Organized  motion  associated  to  modes  2 and  3

As aforementioned, the eigenvalues �
(2)
R and  �

(3)
R have simi

lar  orders of magnitude, suggesting that they may correspond

to  organized motions. This result is  expected in mixing with

Rushton  turbine and may correspond to trailing vortices

induced by the impeller blades. The eigenfunctions corre

sponding  to mode 2,
−−→
˚(2)(x, z), and  3,

−−→
˚(3)(x, z), are plotted

in Fig. 4a and b.  These two modes exhibit vortices, almost

symmetrical with respect to  the plane of the impeller (z = 0),

suggesting  some organization in  the structure of these modes.

Once  again, these plots are not velocity fields. The velocity

field  associated to the sum of these  modes can be written:

−−−→
V

(2,3)
k

(x,  z, t)  =

3
∑

I=2

−→
V

(I)
k

(x, z, t) = a
(2)
k

(t)
−−→
˚(2)(x,  z) +  a

(3)
k

(t)
−−→
˚(3)(x, z)

(24)

In  order to  highlight the link between modes 2 and 3, the k

realizations  of P.O.D. coefficients a
(2)
k

were plotted versus the k

realizations of P.O.D. coefficients a
(3)
k

in Fig. 5a. A  2D projection

Fig. 4  – POD eigen functions of (a) mode 2 and (b) mode 3.

of  the phase portrait in the (a
(2)
k

,  a
(3)
k

) plane is  thus  obtained.

The set of data show an organized shape; for sake of simplicity,

it  will be considered as  an ellipse. The coefficients can thus be

related by the expression:

a
(2)2
k

2�
(2)
R

+
a

(3)2
k

2�
(3)
R

= 1 (25)

where the  eigenvalues are expressed in m2/s2.  The periodic

nature  of these  coherent structures associated with modes

2  and 3 could be  expressed as  sinusoidal variations a(2)(ϕk)

and  a(3)(ϕk) as  shown in  previous papers (Ducci et  al., 2007;

Doulgerakis et al., 2011; Gabelle et al., 2013):

a(2)(ϕk)  =

√

2�
(2)
R cos(ϕk) and  a(3)(ϕk) =

√

2�
(3)
R sin(ϕk)  (26)

where ϕk is the phase angle. The parameters a(2)(ϕk) and a(3)(ϕk)

have  the dimension of velocities (m/s). It is thus possible to

reconstruct  the temporal evolution of the organized motion

associated  to modes 2 and 3:

−−−→
V

(2,3)
k

(x, z, t) =

√

2�
(2)
R cos(ϕk)

−−→
˚(2)(x, z) +

√

2�
(3)
R sin(ϕk)

−−→
˚(3)(x,  z)

(27)



Fig. 5 –  Modes 2 and 3: (a) portrait of phase, (b) pdf of normalized POD coefficient of mode 2, and (c) pdf of normalized POD

coefficient of mode 3.

One can plot in  Fig. 5c and d the probability density func

tions  of  the normalized coefficients a
(2)
k

/

√

�
(2)
R and a

(3)
k

/

√

�
(3)
R .

The  distributions are centered on the origin and their shape

can  be related to sinusoidal distributions, as expected from

the  previous analysis.

4.4.  Organized  motion  associated  to  modes  4 and  5

As  aforementioned, the  eigenvalues �
(4)
R and �

(5)
R have also

similar  orders of magnitude and  may thus  contribute to  orga

nized  motions. The eigenfunctions corresponding to mode 4,
−−→
˚(4)(x,  z), and mode 5,

−−→
˚(5)(x,  z), are plotted in Fig. 6a and b.

Compared to modes 2  and 3, modes 4 and 5 show again vor

tical  structures but the lengthscales seem to be roughly half

the  lengthscales of modes 2  and 3.  Similarly to the previous

analysis  of modes 2 and 3,  the k realizations of a
(4)
k

were plotted

versus  the k  realizations of a
(5)
k

in  Fig. 7a and the probability

density functions of the coefficients a
(4)
k

/

√

�
(4)
R and a

(5)
k

/

√

�
(5)
R

were plotted in Fig. 7b and  c, the eigen values being expressed

in  m2/s2.  Fig. 7a exhibits a  strong relation between modes 4

and  5 whereas the pdf distributions reveal noisy sinusoidal

distributions. In  order to go in deeper depth, the modes 4 and

5  have been plotted versus modes 2 and 3 in Fig. 8a–d. 2D

projections of the phase portrait are thus plotted for differ

ent  bases. The  organized structures revealed by  these plots

exhibit  two lobes (contrary to the previous portrait of phases

plotted in Fig. 5, with only one lobe) and can be analyzed as

follows:

•  the relation between mode 2 and  mode 4 (Fig. 8a) corre

sponds roughly to a  plot of sin(2ϕk −  (�/2)) versus cos(ϕk),

that  is  −cos(2ϕk)  versus cos(ϕk);

•  the relation between mode 2 and mode 5 (Fig. 8b) corre

sponds roughly to  a  plot of sin(2ϕk) versus cos(ϕk);

• the relation between mode 3  and mode 4 (Fig. 8c) corre

sponds roughly to a  plot of sin(2ϕk + (�/2)) versus cos(ϕk), that

is  cos(2ϕk) versus cos(ϕk);

•  the relation between mode 2 and mode 5 (Fig. 8b) corre

sponds again to a plot of sin(2ϕk)  versus cos(ϕk).

Modes 4 and 5 follow thus a  sinusoidal trend, with a  period

which  is half the period of modes 2 and 3. It is thus possible

to  reconstruct the temporal evolution of the organized motion

associated  to modes 4 and 5:

−−−→
V

(4,5)
k

(x,  z, t) =  −

√

2�
(4)
R cos(2ϕk)

−−→
˚(4)(x, z)

+

√

2�
(5)
R sin(2ϕk)

−−→
˚(5)(x, z) (28)

The  structures revealed by modes 2 to 5 can be compared

to  vortex shedding behind bluff bodies that have been investi

gated  by many workers since the pioneering paper of Roshko

(1955).  Similar Lissajous figures were obtained in their works.



Fig. 6 – POD eigen  functions of (a) mode 4 and (b) mode 5.

4.5.  Turbulent  motion

Following the  decomposition method, a  reconstruction of the

turbulence  is based on all  the modes higher than 6:

−−−−→
V

(turb)
k

(x,  z, t) =

N
∑

I=6

−→
V

(I)
k

(x, z, t) =

N
∑

I=6

a
(I)
k

(t)
−→
˚(I)(x,  z)  (29)

The probability density function of horizontal (u′
k
)  component

of  the turbulent velocity vector given by  Eq. (29)  is plotted in

Fig.  9a,  in a  point located in the jet of the impeller. The pdf

are  significantly different from the previous ones; a Gaussian

function  based on the mean and rms values of this  distribution

is  plotted and fits perfectly the data.

4.6.  Kinetic  energy  dissipation  rate  spectrum

As aforementioned, one can derive the Ith  component of the

rate  of viscous dissipation of kinetic energy averaged in the

plane,
〈

ε(I)
〉

,  expressed by Eq. (19). It is thus possible to plot the

distribution  of rate of viscous dissipation associated to each

I  mode versus the mode number, similarly to the eigenvalue

spectrum  (Fig. 2). This kinetic energy dissipation rate spectrum

is  plotted in Fig. 9b. One can notice that upper modes follow a

linear trend in log–log plot (−5/9); this trend is related to the

−11/9  slope of the eigenvalue spectrum plotted in Fig. 2, as it

will  be explained later in the discussion.

5.  Discussion

5.1.  Eigenvalue  spectrum

The eigenvalue spectrum exhibits a −11/9 slope in log–log

plot  of �(I) versus the eigenvalue number I. This result was

explained  by Knight and Sirovich (1990) arguing that it  is a

characteristic  of inertial range of turbulence. As exposed by

these  authors, in turbulent flows, the turbulent kinetic energy

(tke)  can be related to  the energy density spectrum of velocity

EV(K), per vector wave number K, as:

tke =
1

ϑ

∫ ∫ ∫

u2 dv  =

∫ ∫ ∫

EV (K) dK (30)

Clearly, the dimension of the  energy density spectrum of

velocity  EV(K) is dim[EV] = l5/t2 or l2/t2 times l3. It corresponds

to a  kinetic energy in  a  volume. In  the inertial range of turbu

lence,  assuming turbulence isotropy, one can write the energy

density  spectrum of velocity EV per vector wave number in

terms  of the energy density spectrum of velocity ES(�) per

scalar  wave number �: EV = ES(�)/4��2. The trend of the energy

density  spectrum of velocity ES(�) per  scalar wave number is

well  known ES(�) ∝ ε2/3�−5/3.  One can thus  derive the energy

density spectrum of velocity EV(�) per vector wave number as

EV ∝ ε2/3�−11/3.

Knight  and Sirovich (1990) considered then the POD anal

ysis.  As  aforementioned in  Section 3.1, the eigenvalue �(I) is

expressed  in  m5/s2 in  a  full 3D analysis, similarly to the energy

density  spectrum of velocity EV per vector wave number. Thus,

Knight  and Sirovich (1990) considered that each eigen value is

a generalization of the energy density spectrum of velocity EV,

carrying  the same physical dimensions. It follows �(I) ∝ �−11/3.

In  addition, Knight and Sirovich (1990) stipulated that the

wave  number may be related to the eigenvalue number as

�  ∝ I1/3. Thus, they obtained the −11/9 trend �(I) ∝ I−11/9.  This

trend is observed in  our data processing (Fig. 2). This result

is  surprising at first appearance, since the Reynolds number

of  the flow in the tank is  low (it is equal to 530), correspond

ing  to the “transition” region of turbulence. It is known that

local  isotropy only exist if the local Reynolds number is  large

enough.  The first argument is  that the global Reynolds num

ber  is low but the hydrodynamics is heterogeneous in  the

tank.  The level of turbulence is higher close to the impeller

(where  the data where acquired) than far  from it.  Secondly,

Knight  and Sirovich have shown that an inertial range can

exist  at very modest Reynolds numbers. Such −11/9 trend

was  also observed in the same mixing tank with another

shear  thinning fluid (with yield stress, Carbopol, Gabelle et al.,

2013) but this trend was limited to the  higher Reynolds

number.

One must also highlight that the −11/9 trend corresponds

to  modes larger than 20. This relatively large value can be

explained  by  the limitation of 2D measurement of a  3D veloc

ity  field. As  aforementioned, the velocity component normal

to  the 2D plane of measurement is not measured. In addi

tion,  the choice of Zetag fluid was dictated in order to limit

the  turbulence level close to  the impeller; it  was thus possi

ble  to  measure almost all the turbulent scales. Therefore, the



Fig. 7 –  Modes 4 and 5: (a) portrait of phase, (b) pdf of normalized POD coefficient of mode 4, and (c) pdf of normalized POD

coefficient of mode 5.

main  issue of this  work is  to exhibit the −11/9 trend of the

eigenvalue spectrum for large values of modes, correspond

ing to turbulent motion.

5.2.  Dissipation  rate  spectrum

One can  extend the development proposed by Knight and

Sirovich  (1990) to the analysis of the spectrum of kinetic energy

dissipation  rate, plotted in Fig. 9b. This spectrum exhibits a lin

ear  trend in  log–log plot with a  slope −5/9. This result can be

explained  as  follows. The spectrum of the dissipation in  scalar

wave  number can be expressed as:

ε =

∫

D(�) d� (31)

The  dissipation density spectrum can be related to the

energy  density spectrum by  D(�) ≈ �2E(�) ∝ �−5/3.  Considering

once more  that the scalar wave number is related to the eigen

value  number by � ∝ I1/3, we  obtain the trend −5/9 that is

observed in the plot of
〈

ε(I)
〉

, normalized by the total dissi

pation rate (summation for all  modes). This total dissipation

rate  is equal to 0.42 W/kg, almost twice the volume averaged

value of  the dissipation rate of kinetic energy 〈ε〉 which is equal

to  0.2 W/kg.

Here again, the −5/9 trend corresponds to modes larger

than 20. However, the  main issue of this work is to  explain

the  −5/9 trend of the  dissipation spectrum for large values of

modes,  corresponding to turbulent motion.

5.3.  Wave  number  associated  to  the  mode  I

The last question is  related to  the  assumption stating that

�  ∝ I1/3. Recall first that the reconstruction process is given

by  Eq. (1). The dimension of the coefficient a
(I)
k

is l/t whereas

the  eigenfunction
−→
˚(I)(x, z) has no dimension. In  addition, the

coefficient  a
(I)
k

is constant in the domain and only depends

on  the time whereas the eigenfunction
−→
˚(I)(x, z) is constant

with  time but it  varies in the spatial coordinates (x,z). Conse

quently,  any lengthscale associated to the Ith mode can only

be  related to the eigenfunction
−→
˚(I)(x, z) and cannot be related

to  the P.O.D. coefficient which is constant for each mode in the

plane.  It is  thus foreseeable that the wave number associated

to  each I mode depends on the eigenfunction
−→
˚(I)(x,  z)  and/or

on  its gradients. If (Vx,Vz)  are the horizontal and vertical com

ponents  of the velocity vector
−→
V , and [˚

(I)
x (x, z),  ˚

(I)
z (x, z)] are

the  horizontal and vertical components of the eigenfunction
−→
˚(I)(x,  z), one can express the crosscorrelation function Axx of

the  horizontal velocity Vx between (x,z) and (x + L,z) as:

Axx(L)  = Vx(x, z)Vx(x +  L, z)  =
1

N

N
∑

k=1

Vx,k(x, z)Vx,k(x +  L, z)  (32)



Fig. 8 – Portrait of phase: (a) base 24,  (b) base 25, (c) base 34, and (d) base 35.

After derivation, based on the reconstruction process and

on  Eq. (14), one obtains:

Axx(L)  = Vx(x, z)Vx(x  +  L, z)  =

N
∑

I=1

�
(I)
R ˚

(I)
x (x, z)˚

(I)
x (x +  L, z) (33)

In  other words, for each mode I, one can define a  cross

correlation function A
(I)
xx in terms of A

(I)
xx(L) = �(I)˚

(I)
x (x,  z)˚

(I)
x (x  +

L,  z) or in  nondimensional form:

R
(I)
xx(L) =

A
(I)
xx(L)

�
(I)
R

= ˚
(I)
x (x, z)˚

(I)
x (x +  L, z) (34)

A  Taylor development at the origin gives

R
(I)
xx(L) = 1 −

x2

2

[

∂˚
(I)
x

∂x

]2

= 1 − �
(I)2
x x2 (35)

Thus, a wave number can easily be related to the spatial

gradient  of the eigenfunction
−→
˚(I)(x, z).

Indeed, the kinetic energy dissipation rate associated to

each  mode I was expressed by Eq. (18). Dimensionally, one

can  consider a wave number associated to  each I  mode and

defined  by:

�(I)(xl, zk) =

√

√

√

√

√

3
∑

i=1

3
∑

j=1

(

∂˚
(I)
i

(xl, zk)

∂xj
+

∂˚
(I)
j

(xl, zk)

∂xi

)2

(36)

This wave numbers can easily be derived from the eigen

function  gradients. In fact this wave number varies in  the

plane  of measurement. Since the eigenvalue is an  average of

the  kinetic energy in the  plane of measurement associated to

mode I and
〈

ε(I)
〉

is also averaged in the plane of measurement,

one can estimate an  average of the wave number in the plane
〈

�(I)
〉

similarly to Eq. (19).

This averaged wave number
〈

�(I)
〉

is normalized by  the

wave  number of the first mode and plotted versus the eigen

value  number I in  Fig. 10. The curve I ∝
〈

�(I)
〉3

is also plotted.

The  normalized averaged wave numbers issued from  the

eigenfunctions  gradients behaves as the wave number power

1/3,  as stipulated by Knight and Sirovich. The definition of the

wave  number associated to the Ith mode, �(I), is a  generaliza

tion  of this simplified development given by  Eq. (35). Further

analysis  should be done on the pdf of gradients of eigen func

tions  in the plane of measurement for each I mode to better

understand  the  physical meaning of this  scale.



Fig. 9 –  Turbulence (a) pdf of turbulent velocity fluctuations

and  (b) spectrum of dissipation rate of kinetic energy.

Fig. 10 –  Wave number versus eigen mode number.

6.  Conclusion

P.O.D. technique was applied to 2D P.I.V. data. Each instan

taneous  velocity field can be expanded in a  series of P.O.D.

modes.  The first mode is associated to mean flow. The

following  pairs of modes are associated to trailing vortices.

The higher modes are  related to turbulence. The −11/9 trend

of  the eigenvalue spectrum is verified. The spectrum of dis

sipation  rate of kinetic energy is  plotted and the −5/9 trend is

shown  and explained. Length scales associated to  each mode

are  determined and plotted versus mode number. The power

3  trend is shown. The goal of this paper was to show the dif

ferent  trends (−11/9 trend of the eigenvalue spectrum, −5/9

for  the spectrum of dissipation rate of kinetic energy, and 3 for

the  length scales associated to each mode) corresponding to

turbulent motions. Clearly these trends are limited to modes

larger  than 20. The analysis of the  full 3D flow should be com

pleted  to improve the understanding and the quality of both

measurement  and processing of the P.O.D. modes lower than

20.
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