542 research outputs found

    Circulating pro-apoptotic mediators in burn septic acute renal failure

    Get PDF
    The pathogenesis of septic acute kidney injury (AKI) is not well understood. In the present issue of Critical Care, the combined clinical and experimental study from Mariano's group provides new insight into the disease. The study shows that plasma from septic burn patients with acute renal failure initiated pro-apoptotic effects and functional alterations in renal tubular cells and podocytes in vitro that correlated with the degree of proteinuria and renal dysfunction. Pro-apoptotic effects were not attributable to antibiotic or uremic toxicity, but were partially attributable to endotoxin. Sepsis and burn had additive effects. Apart from increasing our understanding of the pathogenesis of septic AKI, the study justifies further research on therapeutic interventions in several directions. These include the binding and elimination of the source of endotoxin by selective decontamination of the digestive tract, the blocking of apoptotic pathways, or the extracorporeal removal of circulating toxic mediators using high permeability hemofiltration or coupled plasma filtration and absorption

    Clinical review: Patency of the circuit in continuous renal replacement therapy

    Get PDF
    Premature circuit clotting is a major problem in daily practice of continuous renal replacement therapy (CRRT), increasing blood loss, workload, and costs. Early clotting is related to bioincompatibility, critical illness, vascular access, CRRT circuit, and modality. This review discusses non-anticoagulant and anticoagulant measures to prevent circuit failure. These measures include optimization of the catheter (inner diameter, pattern of flow, and position), the settings of CRRT (partial predilution and individualized control of filtration fraction), and the training of nurses. In addition, anticoagulation is generally required. Systemic anticoagulation interferes with plasmatic coagulation, platelet activation, or both and should be kept at a low dose to mitigate bleeding complications. Regional anticoagulation with citrate emerges as the most promising method

    Clinical review: Anticoagulation for continuous renal replacement therapy - heparin or citrate?

    Get PDF
    Heparin is the most commonly prescribed anticoagulant for continuous renal replacement therapy. There is, however, increasing evidence questioning its safety, particularly in the critically ill. Heparin mainly confers its anticoagulant effect by binding to antithrombin. Heparin binds to numerous other proteins and cells as well, however, compromising its efficacy and safety. Owing to antithrombin consumption and degradation, and to the binding of heparin to acute phase proteins, and to apoptotic and necrotic cells, critical illness confers heparin resistance. The nonspecific binding of heparin further leads to an unpredictable interference with inflammation pathways, microcirculation and phagocytotic clearance of dead cells, with possible deleterious consequences for patients with sepsis and systemic inflammation. Regional anticoagulation with citrate does not increase the patient's risk of bleeding. The benefits of citrate further include a longer or similar circuit life, and possibly better patient and kidney survival. This needs to be confirmed in larger randomized controlled multicenter trials. The use of citrate might be associated with less inflammation and has useful bio-energetic implications. Citrate can, however, with inadequate use cause metabolic derangements. Full advantages of citrate can only be realized if its risks are well controlled. These observations suggest a greater role for citrate

    Prevention of acute kidney injury and protection of renal function in the intensive care unit : update 2017

    Get PDF
    Background: Acute kidney injury (AKI) in the intensive care unit is associated with significant mortality and morbidity. Objectives: To determine and update previous recommendations for the prevention of AKI, specifically the role of fluids, diuretics, inotropes, vasopressors/vasodilators, hormonal and nutritional interventions, sedatives, statins, remote ischaemic preconditioning and care bundles. Method: A systematic search of the literature was performed for studies published between 1966 and March 2017 using these potential protective strategies in adult patients at risk of AKI. The following clinical conditions were considered: major surgery, critical illness, sepsis, shock, exposure to potentially nephrotoxic drugs and radiocontrast. Clinical endpoints included incidence or grade of AKI, the need for renal replacement therapy and mortality. Studies were graded according to the international GRADE system. Results: We formulated 12 recommendations, 13 suggestions and seven best practice statements. The few strong recommendations with high-level evidence are mostly against the intervention in question (starches, low-dose dopamine, statins in cardiac surgery). Strong recommendations with lower-level evidence include controlled fluid resuscitation with crystalloids, avoiding fluid overload, titration of norepinephrine to a target MAP of 65-70 mmHg (unless chronic hypertension) and not using diuretics or levosimendan for kidney protection solely. Conclusion: The results of recent randomised controlled trials have allowed the formulation of new recommendations and/or increase the strength of previous recommendations. On the other hand, in many domains the available evidence remains insufficient, resulting from the limited quality of the clinical trials and the poor reporting of kidney outcomes

    Hemostasis during low molecular weight heparin anticoagulation for continuous venovenous hemofiltration: a randomized cross-over trial comparing two hemofiltration rates

    Get PDF
    INTRODUCTION: Renal insufficiency increases the half-life of low molecular weight heparins (LMWHs). Whether continuous venovenous hemofiltration (CVVH) removes LMWHs is unsettled. We studied hemostasis during nadroparin anticoagulation for CVVH, and explored the implication of the endogenous thrombin potential (ETP). METHODS: This cross-over study, performed in a 20-bed teaching hospital ICU, randomized non-surgical patients with acute kidney injury requiring nadroparin for CVVH to compare hemostasis between two doses of CVVH: filtrate flow was initiated at 4 L/h and converted to 2 L/h after 60 min in group 1, and vice versa in group 2. Patients received nadroparin 2850 IU i.v., followed by 380 IU/h continuously in the extracorporeal circuit. After baseline sampling, ultrafiltrate, arterial (art) and postfilter (PF) blood was taken for hemostatic markers after 1 h, and 15 min, 6 h, 12 h and 24 h after converting filtrate flow. We compared randomized groups, and 'early circuit clotting' to 'normal circuit life' groups. RESULTS: Fourteen patients were randomized, seven to each group. Despite randomization, group 1 had higher SOFA scores (median 14 (IQR 11-15) versus 9 (IQR 5-9), p = 0.004). Anti-Xa art activity peaked upon nadroparin bolus and declined thereafter (p = 0.05). Anti-Xa PF did not change in time. Anti-Xa activity was not detected in ultrafiltrate. Medians of all anti-Xa samples were lower in group 1 (anti-Xa art 0.19 (0.12-0.37) vs. 0.31 (0.23-0.52), p = 0.02; anti-Xa PF 0.34 (0.25-0.44) vs. 0.51 (0.41-0.76), p = 0.005). After a steep decline, arterial ETPAUC tended to increase (p = 0.06), opposite to anti-Xa, while postfilter ETPAUC increased (p = 0.001). Median circuit life was 24.5 h (IQR 12-37 h). Patients with 'short circuit life' had longer baseline prothrombin time (PTT), activated thromboplastin time (aPTT), lower ETP, higher thrombin-antithrombin complexes (TAT) and higher SOFA scores; during CVVH, anti-Xa, and platelets were lower; PTT, aPTT, TAT and D-dimers were longer/higher and ETP was slower and depressed. CONCLUSIONS: We found no accumulation and no removal of LMWH activity during CVVH. However, we found that early circuit clotting was associated with more severe organ failure, prior systemic thrombin generation with consumptive coagulopathy, heparin resistance and elevated extracorporeal thrombin generation. ETP integrates these complex effects on the capacity to form thrombin. TRIAL REGISTRATION : Clinicaltrials.gov ID NCT00965328

    Renal recovery after acute kidney injury

    Get PDF
    Acute kidney injury (AKI) is a frequent complication of critical illness and carries a significant risk of short-and long-term mortality, chronic kidney disease (CKD) and cardiovascular events. The degree of renal recovery from AKI may substantially affect these long-term endpoints. Therefore maximising recovery of renal function should be the goal of any AKI prevention and treatment strategy. Defining renal recovery is far from straightforward due in part to the limitations of the tests available to assess renal function. Here, we discuss common pitfalls in the evaluation of renal recovery and provide suggestions for improved assessment in the future. We review the epidemiology of renal recovery and of the association between AKI and the development of CKD. Finally, we stress the importance of post-discharge follow-up of AKI patients and make suggestions for its incorporation into clinical practice. Summary key points are that risk factors for non-recovery of AKI are age, CKD, comorbidity, higher severity of AKI and acute disease scores. Second, AKI and CKD are mutually related and seem to have a common denominator. Third, despite its limitations full recovery of AKI may best be defined as the absence of AKI criteria, and partial recovery as a fall in AKI stage. Fourth, after an episode of AKI, serial follow-up measurements of serum creatinine and proteinuria are warranted to diagnose renal impairment and prevent further progression. Measures to promote recovery are similar to those preventing renal harm. Specific interventions promoting repair are still experimental.Peer reviewe
    corecore