8 research outputs found
Sleep stage classification in EEG signals using the clustering approach based probability distribution features coupled with classification algorithms
Sleep scoring is one of the primary tasks for the classification of sleep stages in Electroencephalogram (EEG) signals. Manual visual scoring of sleep stages is time-consuming as well as being dependent on the experience of a highly qualified sleep expert. This paper aims to address these issues by developing a new method to automatically classify sleep stages in EEG signals. In this research, a robust method has been presented based on the clustering approach, coupled with probability distribution features, to identify six sleep stages with the use of EEG signals. Using this method, each 30-second EEG signal is firstly segmented into small epochs and then each epoch is divided into 60 sub-segments. Each sub-segment is decomposed into five levels by using a discrete wavelet transform (DWT) to obtain the approximation and detailed coefficient. The wavelet coefficient of each level is clustered using the k-means algorithm. Subsequently, features are extracted based on the probability distribution for each wavelet coefficient. The extracted features then are forwarded to the least squares support vector machine classifier (LS-SVM) to identify sleep stages. Comparisons with several existing methods are also made in this study. The proposed method for the classification of the sleep stages achieves an average accuracy rate of 97.4%. It can be an effective tool for sleep stages classification and can be useful for doctors and neurologists for diagnosing sleep disorders
A novel Alcoholic EEG signals Classification Approach Based on AdaBoost k-means Coupled with Statistical Model
Identification of alcoholism is an important task because it affects the operation of the brain. Alcohol consumption, particularly heavier drinking is identified as an essential factor to develop health issues, such as high blood pressure, immune disorders, and heart diseases. To support health professionals in diagnosis disorders related with alcoholism with a high rate of accuracy, there is an urgent demand to develop an automated expert systems for identification of alcoholism. In this study, an expert system is proposed to identify alcoholism from multi-channel EEG signals. EEG signals are partitioned into small epochs, with each epoch is further divided into sub-segments. A covariance matrix method with its eigenvalues is utilised to extract representative features from each sub-segment. To select most relevant features, a statistic approach named Kolmogorov–Smirnov test is adopted to select the final features set. Finally, in the classification part, a robust algorithm called AdaBoost k-means (AB-k-means) is designed to classify EEG features into two categories alcoholic and non-alcoholic EEG segments. The results in this study show that the proposed model is more efficient than the previous models, and it yielded a high classification rate of 99%. In comparison with well-known classification algorithms such as K-nearest k-means and SVM on the same databases, our proposed model showed a promising result compared with the others. Our findings showed that the proposed model has a potential to implement in automated alcoholism detection systems to be used by experts to provide an accurate and reliable decisions related to alcoholism
Theoretical analysis for miscellaneous soliton waves in metamaterials model by modification of analytical solutions
In this article, the new exact solitary wave solutions for the generalized nonlinear Schrodinger equation with parabolic nonlinear (NL) law employing the improved tanh(Gamma(pi))-coth(Gamma(pi)) function technique and the combined tan(Gamma(pi))-cot(Gamma(pi)) function technique are obtained. The offered techniques are novel and also for the first time in this study are used. Different collections of hyperbolic and trigonometric function solutions acquired rely on a map between the considered equation and an auxiliary ODE. The several hyperbolic and trigonometric forms of solutions based on diverse restrictions between parameters involved in equations and integration constants that appear in the solution are obtained. A few significant ones among the reported solutions are pictured to perceive the physical utility and peculiarity of the considered model utilizing mathematical software. The main subject of this work is that one can visualize and update the knowledge to overcome the most common techniques and defeat to solve the ODEs and PDEs. The concluded solutions are demonstrated where are valid by using Maple software and also found those are correct. The proposed methodology for solving the metamaterilas model are designed where is effectual, unpretentious, expedient, and manageable. Finally, the existence of the obtained solutions for some conditions is also analyzed
An Intelligence Approach for Blood Pressure Estimation from Photoplethysmography Signal
Commercial cuff-based Blood pressure (BP) devices are mainly not suitable or portable. To ease the measurement of BP devices, we proposed a new model for BP estimation based on photoplethysmography (PPG) signal. PPG signals are segmented into cycles using an improved peak detection algorithm. Then, each segment is mapped into a graph. Graph wavelets transform (GWT) is applied to each segment. The spectral graph features are extracted and tested to assess the BP. A ridge regression is employed to evaluated the BP with the reference of PPG. A publica dataset is used to evaluate the proposed model. The proposed model achieved good results and the obtained results are promising in improving the accuracy of BP estimation
Natural Time Series Parameters Forecasting: Validation of the Pattern-Sequence-Based Forecasting (PSF) Algorithm; A New Python Package
Climate change has contributed substantially to the weather and land characteristic phenomena. Accurate time series forecasting for climate and land parameters is highly essential in the modern era for climatologists. This paper provides a brief introduction to the algorithm and its implementation in Python. The pattern-sequence-based forecasting (PSF) algorithm aims to forecast future values of a univariate time series. The algorithm is divided into two major processes: the clustering of data and prediction. The clustering part includes the selection of an optimum value for the number of clusters and labeling the time series data. The prediction part consists of the selection of a window size and the prediction of future values with reference to past patterns. The package aims to ease the use and implementation of PSF for python users. It provides results similar to the PSF package available in R. Finally, the results of the proposed Python package are compared with results of the PSF and ARIMA methods in R. One of the issues with PSF is that the performance of forecasting result degrades if the time series has positive or negative trends. To overcome this problem difference pattern-sequence-based forecasting (DPSF) was proposed. The Python package also implements the DPSF method. In this method, the time series data are first differenced. Then, the PSF algorithm is applied to this differenced time series. Finally, the original and predicted values are restored by applying the reverse method of the differencing process. The proposed methodology is tested on several complex climate and land processes and its potential is evidenced
Natural Time Series Parameters Forecasting: Validation of the Pattern-Sequence-Based Forecasting (PSF) Algorithm; A New Python Package
Climate change has contributed substantially to the weather and land characteristic phenomena. Accurate time series forecasting for climate and land parameters is highly essential in the modern era for climatologists. This paper provides a brief introduction to the algorithm and its implementation in Python. The pattern-sequence-based forecasting (PSF) algorithm aims to forecast future values of a univariate time series. The algorithm is divided into two major processes: the clustering of data and prediction. The clustering part includes the selection of an optimum value for the number of clusters and labeling the time series data. The prediction part consists of the selection of a window size and the prediction of future values with reference to past patterns. The package aims to ease the use and implementation of PSF for python users. It provides results similar to the PSF package available in R. Finally, the results of the proposed Python package are compared with results of the PSF and ARIMA methods in R. One of the issues with PSF is that the performance of forecasting result degrades if the time series has positive or negative trends. To overcome this problem difference pattern-sequence-based forecasting (DPSF) was proposed. The Python package also implements the DPSF method. In this method, the time series data are first differenced. Then, the PSF algorithm is applied to this differenced time series. Finally, the original and predicted values are restored by applying the reverse method of the differencing process. The proposed methodology is tested on several complex climate and land processes and its potential is evidenced
Designing a Mathematical Model to Solve the Uncertain Facility Location Problem Using C Stochastic Programming Method
Locating facilities such as factories or warehouses is an important and strategic decision for any organization. Transportation costs, which often form a significant part of the price of goods offered, are a function of the location of the plans. To determine the optimal location of these designs, various methods have been proposed so far, which are generally definite (non-random). The main aim of the study, while introducing these specific algorithms, is to suggest a stochastic model of the location problem based on the existing models, in which random programming, as well as programming with random constraints are utilized. To do so, utilizing programming with random constraints, the stochastic model is transformed into a specific model that can be solved by using the latest algorithms or standard programming methods. Based on the results acquired, this proposed model permits us to attain more realistic solutions considering the random nature of demand. Furthermore, it helps attain this aim by considering other characteristics of the environment and the feedback between them