17 research outputs found
The Anfeg post-collisional Pan-African high-K calc-alkaline batholith (Central Hoggar, Algeria), result of the Latea microcontinent metacratonisation
IF=1.219info:eu-repo/semantics/publishe
The Temaguessine Fe-cordierite orbicular granite (Central Hoggar, Algeria): U–Pb SHRIMP age, petrology, origin and geodynamical consequences for the late Pan-African magmatism of the Tuareg shield
IF=1.219info:eu-repo/semantics/publishe
New African Lower Carboniferous paleomagnetic pole from intrusive rocks of the Tin Serririne basin (Southern border of the Hoggar, Algeria)
International audienceA paleomagnetic study has been conducted on intrusive doleritic rocks cropping out within Devonian horizontal tabular formations of the Saharan craton (Tin Serririne basin, South of Hoggar shield). The 40K/40Ar dating of the dolerites gave an age of 347.6 ± 8.1 Ma, i.e. Tournaisian. The paleomagnetic data present three different directions. The first has a paleomagnetic pole close to the previous African poles of Permian age. This direction is therefore interpreted as a Permian remagnetization. The second direction, which is defined by both linear regression and remagnetization circles analysis, is considered as the primary magnetization. It yields a new African Tournaisian paleomagnetic pole (λ = 18.8° S, phi = 31.2° E, K = 29, A95 = 7.5°) very close to the Ben Zireg Tounaisian pole [Aifa, T., Feinberg, H., Pozzi, J.P., 1990. Devonian/Carboniferous paleopoles for Africa. Consequences for Hercynian geodynamics. Tectonophysics, 179, 288–304]. The third direction has intermediate orientation between those of the first or second directions and that of the Upper Cenozoic field. It is interpreted as related to a composite magnetization. This new Tin Serririne pole improves the APWP of Gondwana, for this key period of the evolution of the Pangea. This APWP confirms the previous paleogeographic reconstruction which shows that the pre-Hercynian ocean between Gondwana and Laurussia is still not close during the beginning of the Carboniferous
Late Ediacaran geological evolution (575–555 Ma) of the Djanet Terrane, Eastern Hoggar, Algeria, evidence for a Murzukian intracontinental episode
IF=3.736info:eu-repo/semantics/publishe
Enigmatic well-characterized remanent magnetization of silicified Lower Devonian rocks from the Tadrart area (Murzuq basin, SE Algeria)
International audienceTo improve the poor Gondwana paleomagnetic database for Devonian times, detailed paleomagnetic analyses were performed on red chert-like rocks and partly silicified paleosols within the Lower Devonian Ikniouen level (fine-grained sandstones including red ironstone) in conformity within the sub-horizontal Tadrart coarse white formations of the Murzuq basin. Silicification, limited to this level that is only a few meters thick, was probably due to tropical warm climatic conditions during and shortly after the rock deposition. In two sections 40 km away each other, paleomagnetic data point out a high-temperature Characteristic Remanent Magnetization (ChRM) with very well-defined mean direction, positive reversal test and relatively high (5) Q and R scores. Rock magnetic data indicate minerals of the hematite family, but the presence of a minor amount of other mineral phases remains possible. At least part of the ChRMs are Chemical Remanent Magnetizations, likely acquired during or shortly after deposition. The corresponding paleomagnetic results (paleomagnetic pole at 28.6° E and 71.1° S, with K = 1004, A95 = 1.5°) could have major geodynamical implications for the Gondwana supercontinent. In fact, ChRM acquired in this level during or shortly after deposition should imply a much-unexpected fast latitudinal continental drift of the Gondwana during the Lower Devonian or a significant and fast true polar wander. Though much more difficult to match with the ChRM and geological characteristics, the only possible alternative interpretation for the Ikniouen data should be a chemical remagnetization acquired during the Late Cretaceous-Early Paleocene times
Eburnean and Pan-African granitoids and the Raghane mega-shear zone evolution: Image analysis, U-Pb zircon age and AMS study in the Arokam Ténéré (Tuareg shield, Algeria)
info:eu-repo/semantics/publishe
Paleomagnetic analyses on red chert-like rocks and partly silicified paleosols within the Lower Devonian Ikniouen level of the Tadrart Formation
In order to improve the poor Gondwana paleomagnetic database for Devonian times, detailed paleomagnetic analyses were performed on red chert-like rocks and partly silicified paleosols within the Lower Devonian Ikniouen level of the Tadrart Formation. Silicification, limited to this level that is only a few meters thick, was probably due to tropical warm climatic conditions during and shortly after the rock deposition. In two sections 40 km away each other, paleomagnetic data point out a high temperature Characteristic Remanent Magnetization (ChRM) with a very well-defined mean direction and a positive reversal test. Rockmagnetism data evidence minerals of the hematite family, but the presence of a minor amount of other mineral phases remains possible. These paleomagnetic results could have major geodynamical implications for the Gondwana supercontinent. In fact, ChRM acquired in this level during or shortly after deposition should imply a very unexpected fast latitudinal continental drift of the Gondwana during the Lower Devonian. That should correspond, for the APWP, to a large loop with a reversal of the drift direction from a much more southern extreme location than previously assumed. A "more realistic" interpretation should be related to a significant True Polar Wander during this period. Though much more difficult to match with the ChRM and geological characteristics, the only possible alternative interpretation for the Ikniouen data should be a chemical remagnetization acquired during the Late Cretaceous - Early Paleocene times
Repeated granitoid intrusions during the Neoproterozoic along the western boundary of the Saharan metacraton, Eastern Hoggar, Tuareg shield, Algeria: An AMS and U–Pb zircon age study
IF=1.677info:eu-repo/semantics/publishe
Improved Moscovian part of the Gondwana APWP for paleocontinental reconstructions, obtained from a first paleomagnetic pole, age-constrained by a fold test, from In Ezzane area in the Murzuq basin (Algeria, stable Africa)
International audienceTo improve paleocontinental reconstructions, paleomagnetic reference curves (Apparent Polar Wander Path: APWP) feature for large continents have to be continuously refined by adding up new high-quality data. For stable Africa, the Moscovian period was favorable for such aim, with well-dated and widespread geological formations. A new study has been conducted in the Upper “Dembaba” geological formation of Lower Moscovian age outcropping in the western part of the “Murzuq” basin (Saharan platform). Well-defined ChRMs, combined with remagnetization circles data, both constrained in age by a positive fold test, yield a new significant paleomagnetic pole (λ = 25.2°S, ϕ = 59.9°E, K = 55, A95 = 5.4°). When joined with previous African data of the same age, it gives an improved reference pole for Africa (λ = 28.9°S, ϕ = 54.5°E, K = 106, A95 = 3.6°). The Mean Moscovian paleomagnetic pole determined from an updated Gondwana Paleozoic APWP (λ = 29.4°S, ϕ = 51.5°E, K = 11, A95 = 1.8°), associated with the corresponding Laurussia pole (Domeier et al., 2012), yields a more constrained paleocontinental reconstruction for 310 Ma