1,305 research outputs found

    A generalized integral fluctuation theorem for general jump processes

    Full text link
    Using the Feynman-Kac and Cameron-Martin-Girsanov formulas, we obtain a generalized integral fluctuation theorem (GIFT) for discrete jump processes by constructing a time-invariable inner product. The existing discrete IFTs can be derived as its specific cases. A connection between our approach and the conventional time-reversal method is also established. Different from the latter approach that was extensively employed in existing literature, our approach can naturally bring out the definition of a time-reversal of a Markovian stochastic system. Additionally, we find the robust GIFT usually does not result into a detailed fluctuation theorem

    Pretreating poplar cuttings with low nitrogen ameliorates salt stress responses by increasing stored carbohydrates and priming stress signaling pathways

    Get PDF
    Soil salinity is a widespread stress in semi-arid forests worldwide, but how to manage nitrogen (N) nutrition to improve plant saline tolerance remains unclear. Here, the cuttings of a widely distributed poplar from central Asia, Populus russikki Jabl., were exposed to either normal or low nitrogen (LN) concentrations for two weeks in semi-controlled greenhouse, and then they were added with moderate salt solution or not for another two weeks to evaluate their physiological, biochemical, metabolites and transcriptomic profile changes. LN-pretreating alleviated the toxicity caused by the subsequent salt stress in the poplar plants, demonstrated by a significant reduction in the influx of Na+ and Cl- and improvement of the K+/Na+ ratio. The other salt-stressed traits were also ameliarated, indicated by the variations of chlorophyll content, PSII photochemical activity and lipid peroxidation. Stress alleviation resulted from two different processes. First, LN pretreatment caused a significant increase of non-structural carbohydrates (NSC), allowed for an increased production of osmolytes and a higher potential fueling ion transport under subsequent salt condition, along with increased transcript levels of the cation/H+ ATPase. Second, LN pretreatment enhanced the transcript levels of stress signaling components and phytohormones pathway as well as antioxidant enzyme activities. The results indicate that early restrictions of N supply could enhance posterior survival under saline stress in poplar plants, which is important for plantation programs and restoration activities in semi-arid areas.This research was supported by Natural Science Foundation of China ( 31770644 and 31270660 ), Project of Innovation research team in Sichuan Education Administration in China (No. 13TD0023 )

    Amn1 governs post-mitotic cell separation in Saccharomyces cerevisiae

    Get PDF
    <div><p>Post-mitotic cell separation is one of the most prominent events in the life cycle of eukaryotic cells, but the molecular underpinning of this fundamental biological process is far from being concluded and fully characterized. We use budding yeast <i>Saccharomyces cerevisiae</i> as a model and demonstrate <i>AMN1</i> as a major gene underlying post-mitotic cell separation in a natural yeast strain, YL1C. Specifically, we define a novel 11-residue domain by which Amn1 binds to Ace2. Moreover, we demonstrate that Amn1 induces proteolysis of Ace2 through the ubiquitin proteasome system and in turn, down-regulates Ace2’s downstream target genes involved in hydrolysis of the primary septum, thus leading to inhibition of cell separation and clumping of haploid yeast cells. Using ChIP assays and site-specific mutation experiments, we show that Ste12 and the a1-α12 heterodimer are two direct regulators of <i>AMN1</i>. Specifically, a1-α2, a diploid-specific heterodimer, prevents Ste12 from inactivating <i>AMN1</i> through binding to its promoter. This demonstrates how the Amn1-governed cell separation is highly cell type dependent. Finally, we show that <i>AMN1</i><sup><i>368D</i></sup> from YL1C is a dominant allele in most strains of <i>S</i>. <i>cerevisiae</i> and evolutionarily conserved in both genic structure and phenotypic effect in two closely related yeast species, <i>K</i>. <i>lactis</i> and <i>C</i>. <i>glabrata</i>.</p></div

    Exploring the Potential of Integrated Optical Sensing and Communication (IOSAC) Systems with Si Waveguides for Future Networks

    Full text link
    Advanced silicon photonic technologies enable integrated optical sensing and communication (IOSAC) in real time for the emerging application requirements of simultaneous sensing and communication for next-generation networks. Here, we propose and demonstrate the IOSAC system on the silicon nitride (SiN) photonics platform. The IOSAC devices based on microring resonators are capable of monitoring the variation of analytes, transmitting the information to the terminal along with the modulated optical signal in real-time, and replacing bulk optics in high-precision and high-speed applications. By directly integrating SiN ring resonators with optical communication networks, simultaneous sensing and optical communication are demonstrated by an optical signal transmission experimental system using especially filtering amplified spontaneous emission spectra. The refractive index (RI) sensing ring with a sensitivity of 172 nm/RIU, a figure of merit (FOM) of 1220, and a detection limit (DL) of 8.2*10-6 RIU is demonstrated. Simultaneously, the 1.25 Gbps optical on-off-keying (OOK) signal is transmitted at the concentration of different NaCl solutions, which indicates the bit-error-ratio (BER) decreases with the increase in concentration. The novel IOSAC technology shows the potential to realize high-performance simultaneous biosensing and communication in real time and further accelerate the development of IoT and 6G networks.Comment: 11pages, 5 figutre

    Tunable van Hove singularity without structural instability in Kagome metal CsTi3_3Bi5_5

    Full text link
    In Kagome metal CsV3_3Sb5_5, multiple intertwined orders are accompanied by both electronic and structural instabilities. These exotic orders have attracted much recent attention, but their origins remain elusive. The newly discovered CsTi3_3Bi5_5 is a Ti-based Kagome metal to parallel CsV3_3Sb5_5. Here, we report angle-resolved photoemission experiments and first-principles calculations on pristine and Cs-doped CsTi3_3Bi5_5 samples. Our results reveal that the van Hove singularity (vHS) in CsTi3_3Bi5_5 can be tuned in a large energy range without structural instability, different from that in CsV3_3Sb5_5. As such, CsTi3_3Bi5_5 provides a complementary platform to disentangle and investigate the electronic instability with a tunable vHS in Kagome metals

    Deciphering the Anode-Enhanced Azo Dye Degradation in Anaerobic Baffled Reactors Integrating With Microbial Fuel Cells

    Get PDF
    Microbial anode respiration in microbial fuel cells (MFCs) can enhance the degradations of many electron acceptor-type contaminants which are presumed to be competitive to anode respiration. The mechanisms underlying those counterintuitive processes are important for MFCs application but are unclear. This study integrated MFCs with anaerobic baffled reactor (ABR), termed MFC-ABR, to enhance the reduction of azo dye acid orange-7 (AO-7). Compare with ABR, MFC-ABR enhanced the degradation of AO-7, especially at high AO-7 concentration (800 mg/L). Acute toxicity test suggested a higher detoxication efficiency in MFC-ABR. Higher microbial viability, dehydrogenase activity and larger sludge granule size were also observed in MFC-ABR. MFC-ABR significantly enriched and reshaped the microbial communities relative to ABR. Bacteria with respiratory versatility, e.g., Pseudomonas, Geobacter, and Shewanella, were significantly enriched. Functional prediction showed that six metabolism functions (manganese-, iron-, fumarate- and nitrate-respiration, oil bioremediation and chemoheterotrophy) were significantly stimulated while methanogenesis, sulfate-respiration, hydrogen-oxidation were suppressed in MFC-ABR relative to ABR. The results provided important information for understanding the role of microbial anode respiration in contaminated environments

    Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells

    Get PDF
    © 2015 Macmillan Publishers Limited. All rights reserved. microRNA-34a (miR-34a) and sirtuin 1 (SirT1) have been extensively studied in tumour biology and longevityaging, but little is known about their functional roles in smooth muscle cell (SMC) differentiation from pluripotent stem cells. Using well-established SMC differentiation models, we have demonstrated that miR-34a has an important role in SMC differentiation from murine and human embryonic stem cells. Surprisingly, deacetylase sirtuin 1 (SirT1), one of the top predicted targets, was positively regulated by miR-34a during SMC differentiation. Mechanistically, we demonstrated that miR-34a promoted differentiating stem cells' arrest at G0G1 phase and observed a significantly decreased incorporation of miR-34a and SirT1 RNA into Ago2-RISC complex upon SMC differentiation. Importantly, we have identified SirT1 as a transcriptional activator in the regulation of SMC gene programme. Finally, our data showed that SirT1 modulated the enrichment of H3K9 tri-methylation around the SMC gene-promoter regions. Taken together, our data reveal a specific regulatory pathway that miR-34a positively regulates its target gene SirT1 in a cellular context-dependent and sequence-specific manner and suggest a functional role for this pathway in SMC differentiation from stem cells in vitro and in vivo

    Simulation of a floating solar farm in waves with a novel sun-tracking system

    Get PDF
    12th International Workshop on Ship and Marine Hydrodynamics (IWSH-2023) 28/08/2023 - 01/09/2023 Aalto University, Espoo, FinlandThe awareness of the energy and climate crisis has accelerated the development of renewable energy sources. Photovoltaic (PV) solar power plants harvest clean solar energy and convert it to electricity, which will be one of the most promising alternatives to the power industry in the context of a low-carbon society. Due to its low power density, the traditional deployment of PV systems on land or inland rivers requires much space. Therefore, industries are increasingly interested in expanding offshore Floating PhotoVoltaics (FPV) to oceans, where FPV has less influence on the marine environment and does not occupy precious space for land resources and human activities. This study performs a hydrodynamics-based structural response analysis for a novel FPV system in OpenFOAM. The wave-proof FPV platform is newly designed for this work, which integrated breakwater technologies to sustain the system's survivability in harsh ocean-wave environments. Firstly, the rational mooring types for FPVs installed close to the island are studied considering seabed effects. Subsequently, extensive parametric studies have been conducted to determine a rational design strategy for the mitigation of wave impact. Several potential effects of the proposed platforms on the hydrodynamics in a coastal sea are evaluated for the first time.Innovate UK: 1004818
    • …
    corecore