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Abstract 

Genetic recombination characterized by reciprocal exchange of genes on paired homologous 

chromosomes is the most prominent event in meiosis of almost all sexually reproductive 

organisms. It contributes to genome stability by ensuring the balanced segregation of paired 

homologs in meiosis, and it is also the major driving factor in generating genetic variation for 

natural and artificial selection. Meiotic recombination is subjected to the control of a highly 

stringent and complex regulating process and meiotic recombination frequency (MRF) may be 

affected by biological and abiotic factors such as sex, gene density, nucleotide content and 

chemical/temperature treatments, having motivated tremendous researches for artificially 

manipulating MRF. Whether genome polyploidization would lead to a significant change in MRF 

has attracted both historical and recent research interests, however tackling this fundamental 

question is methodologically challenging due to the lack of appropriate methods for tetrasomic 

genetic analysis, thus has led to controversial conclusions in the literature. This paper presents a 

comprehensive and rigorous survey of genome duplication mediated change in MRF using S. 

cerevisiae as a eukaryotic model. It demonstrates that genome duplication can lead to consistently 

significant increase in MRF and rate of crossovers across all sixteen chromosomes of S. cerevisiae, 

including both cold and hot spots of MRF. This ploidy driven change in MRF is associated with 

weakened recombination interference, enhanced double-strand break density and loosened 

chromatin histone occupation. The study illuminates a significant evolutionary feature of genome 

duplication and opens an opportunity to accelerate response to artificial and natural selection 

through polyploidization. 

 

INTRODUCTION 

In meiosis of all sexually reproductive eukaryotic species, recombination between homologous 

chromosomes generates reciprocal exchanges of genes on the chromosomes through 

chromosomal crossing over. Crossovers are essential for ensuring physical connections and 

balanced segregation between the homologous chromosomes (Jones and Franklin 2006). 

Reciprocal exchange of parental genetic material allows reshuffling of genes on these 

chromosomes and thus creates new allelic combinations of them in offspring individuals for 

natural and/or artificial selection. It has been well documented that meiotic recombination is a 

strictly programmed and controlled process, characterized by DNA double-strand breaks catalyzed 

by the topo-isomerase-related enzyme Spo11 and repairing of the breaks involving with a group of 

evolutionarily highly conserved proteins (Osman et al 2011).  It is well established that initiation 
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and distribution of recombination along chromosomes is not random, and meiotic recombination 

frequency (MRF) may be affected by several biological and genomic factors such as sex 

(Lenormand and Dutheil 2005), density of genes or transposable elements (Shifman et al. 2006), 

GC nucleotide content (DeRose-Wilson and Gaut 2007) and genome sequence heterozygosity 

(Ziolkowski et al 2015).  

 

Whether polyploidization of a eukaryotic genome alters the meiotic recombination frequency 

(MRF) has attracted both historical and recent research interests. Oram (1959) was probably the 

pioneer in investigating this fundamental question by comparing MRF of two chromosomal 

regions in diploid and tetraploid maize segregation populations and concluded that MRF in one of 

the two marker intervals was significantly higher in tetraploids than that in diploids, but the 

difference is not significant in the other chromosomal interval. Using data collected on three 

linked dominant/recessive markers from diploid and autotetraploid maize backcross populations, 

Welch (1962) observed an increased rate of crossovers in diploids in one of the two linked 

chromosomal intervals but no difference in the crossover rate in the other, and emphasized the 

weakness of his data analysis for unavailability of an appropriate method for analyzing the 

autotetraploid data. Sved (1964) presented a theoretical prediction that polyploidization through 

genome duplication may increase MRF. More recently, Pecinka et al (2011) focused on 

recombination frequency between a single pair of seed expressing fluorescent markers 

segregating in large diploid and tetraploid populations of Arabidopsis and concluded that 

recombination frequency between the fluorescent marker loci was markedly higher in the 

tetraploids than in the diploids. Recognized inappropriate method of statistical analysis with the 

tetraploid marker data, we re-analyzed their dataset and inferred a significant increase in the 

recombination frequency in the tetraploids than in the diploids (Wang and Luo 2012). This paper 

reports a comprehensive study on ploidy driven change in MRF by using Saccharomyces cerevisiae 

as an experimental model and by developing appropriate statistical methods for modeling and 

analyzing the autotetraploid experimental datasets.  

 

RESULTS 

Creation and transformation of fluorescent marker cassettes  

Firstly, we modified the lithium acetate method (Lorenz et al. 1995) to transform the two 

fluorescent cassettes, GFP and RFP (Supplementary Figure 1A), which were driven by the 

promoter TEF2 and TDH1, onto the same chromosome at pre-designed locations in the haploid 
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yeast strain S288c. We then developed a feasible but reliable experimental approach to convert 

two haploid yeast strains, S288c and SK1 respectively, into diploid and then duplicated the diploids 

into autotetraploid strains as described in Supplementary Figure 1B and Supplementary Method. 

Ploidy levels of the created diploid and autotetraploid strains were confirmed in terms of measure 

of the genomic DNA content by use of the fluorescence-activated cell sorting (Supplementary 

Figure 1C). We repeated transformation of the cassette bearing the two fluorescent markers into 

each of the sixteen chromosomes at a pre-designed location as illustrated in Figure 1A. Precise 

locations of these fluorescent marker genes are detailed in Supplementary Table 1 for each of the 

sixteen yeast chromosomes. Design of the marker locations were mainly arbitrary for a fairly even 

representation of the marker locations in the sixteen yeast chromosomes except that some of 

these marker genes have been deliberately designed to locate within previously identified 

recombination hot (red stars) or cold (blue stars) spot regions (Gerton et al. 2000) as highlighted in 

Figure 1A and Supplementary Table 1.  

 
For each of the fluorescent marker cassettes, we created two F2 segregating populations from 

crossing the two parental strains, s288cand SK1, in diploid and autotetraploid respectively, and 

scored a varying number (603 to 2,129) of tetrads from these segregating populations for their 

phenotype of the two fluorescent markers (Supplementary Table 2).  Each spore in the 26,281 

tetrads scored was phenotyped as either black (B), green (G), red (R) or yellow (Y), corresponding 

to the spores that carry none, only green allele, only red allele or both of the fluorescent marker 

alleles (Figure 1B).  
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Figure 1 (A) Distribution of fluorescent red and green markers on each of sixteen yeast 
chromosomes with black dots indicating the centromeres, the red and blue stars being the 
previously defined hot and cold recombination spots. (B) Phenotype of spores carrying different 
alleles at the fluorescent markers. The black olives indicate the centromeres on the yeast 
chromosomes.  
 
 
Meiotic recombination frequencies in the diploid and autotetraploid segregating populations 

The tetrad data is fully informative in regard to the underlying genotype and recombination events 

during meiosis of the diploid parents, and thus calculation of recombination frequency between 

the fluorescent markers is straightforward in the diploid segregating populations. However, the 

same analysis in the autotetraploid segregating populations is far more complicated, primarily due 

to the complexities in gene segregation and recombination under tetrasomic inheritance, 

reflecting in several main aspects. Firstly, in autopolyploids, homologous chromosomes in meiosis 

may undergo quadrivalent pairing, resulting in the well-known phenomenon of double reduction, 

i.e. sister chromatids enter into the same gamete (Mather 1936) after the meiosis, leading to 

systematic allelic segregation distortion in comparison to disomic gene segregation and 

recombination. Secondly, multiple alleles at individual loci of polyploids cause a substantially wider 

spectrum of genotypic segregation at the loci. These make tetrasomic linkage analysis a historically 
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challenging and unsolved question (Bailey 1961) since the pioneer geneticists like RA Fisher (1947), 

JBS Haldane (Haldane 1930) and K Mather (1936). We have developed a general statistical 

framework for tetrasomic linkage analysis, which has taken a full account of the key features of 

tetrasomic inheritance (Luo et al 2004). We modified that general framework to specifically model 

and analyze the tetrad data of the autotetraploid segregating populations in the present study as 

detailed in Statistical Method 1.  

 
Table 1 lists the maximum likelihood estimates of recombination frequencies ( ) and their 

sampling standard deviations (s.d.) between the fluorescent markers across the 16 yeast 

chromosomes in autotetraploid and diploid yeast genomes of S. serevisae. It shows that MRF in 

the autotetraploid genome is consistently highly significantly increased across all the 16 yeast 

chromosomal regions under investigation when compared to that in the diploid genome. We have 

converted these estimates of MRF into mapping distances in cM by multiplying the MRF estimates 

by 100 and illustrated the estimated mapping distances of the marker regions normalized by the 

corresponding physical distance in (Mbp) in Figure 2A. Means of cM/Mbp values are calculated to 

be 383.5 and 506.7 for the diploid and tetraploid yeasts respectively. It is noted that the significant 

increase in MRF in the autotetraploids was also observed in both previously characterized hot or 

cold recombination spots (Supplementary Table 1). Listed also in Table 1 are the maximum 

likelihood estimates of the coefficient of double reduction at the linked fluorescent marker loci (

and ) and the corresponding standard deviations. Moreover, estimates of the coefficient of 

double reduction are statistically significant for the markers on chromosomes 4, 7, 13, 14 (Table 1), 

revealing a clear signal of the quadrivalent chromosomal pairing in the marked chromosomal 

regions during meiosis of the autotetraploid yeast cells, suggesting significant double reduction 

event and tetrasomic inheritance of maker alleles in the autotetraploid yeast strains. Additionally, 

we tested for significance in allelic deviation from neutral segregation at the marker loci and none 

of the tests was statistically significant (P ≥ 0.1750), excluding the possibility of selection on the 

fluorescent markers and the influence of selection on assessing MRF.     

 
 
 
 
 
 
 
 
 

r̂

̂

̂
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Table 1 Maximum likelihood estimates of recombination frequencies ( r̂ ) and the sampling 
standard deviations (s.d.) between the fluorescent markers across 16 yeast chromosomes in 
autotetraploid and diploid yeast genomes as well as the maximum likelihood estimates of the 

coefficient of double reduction at the linked fluorescent  loci (̂ and ̂ ) and the corresponding 

standard deviation.  

Chromosomes 
Autotetraploids  Diploids 

ˆ . .s d  ˆ . .s d    ˆ . .r s d  ˆ . .r s d  

1 0.0305  0.0336 0.0361  0.0335 0.2245  0.0086 0.2126  0.0081 

2 0.0466  0.0394 0.0435  0.0393 0.1640  0.0088 0.1165  0.0065 

3 0.0060  0.0347 0.0229  0.0347 0.1617  0.0076 0.1035  0.0056 

4* 0.0659  0.0382 0.0629  0.0382 0.1071  0.0069 0.0797  0.0054 

5 0.0431  0.0392 0.0446  0.0392 0.1404  0.0081 0.1004  0.0061 

6 0.0147  0.0383 0.0368  0.0383 0.4392  0.0139 0.2776  0.0088 

7-1** 0.0618  0.0233 0.0678  0.0234 0.2322  0.0062 0.1599  0.0062 

7-2** 0.0629  0.0216 0.0672  0.0217 0.2445  0.0059 0.1755  0.0063 

8 0.0000  0.0383 0.0063  0.0398 0.3460  0.0128 0.2571  0.0087 

9 0.0252  0.0385 0.0312  0.0385 0.2389  0.0103 0.1918  0.0080 

10 0.0338  0.0392 0.0510  0.0392 0.2295  0.0103 0.1765  0.0076 

11 0.0404  0.0387 0.0510  0.0387 0.1682  0.0087 0.1645  0.0074 

12 0.0495  0.0361 0.0326  0.0361 0.1085  0.0065 0.0642  0.0046 

13* 0.0786  0.0377 0.0814  0.0378 0.2110  0.0095 0.1884  0.0078 

14** 0.0637  0.0308 0.0751  0.0308 0.6143  0.0133 0.4681  0.0083 

15 0.0000  0.0403 0.0098  0.0403 0.0650  0.0056 0.0332  0.0036 

16 0.0000  0.0384 0.0217  0.0394 0.2644  0.0110 0.1999  0.0080 

 * (P < 0.05) and ** (P < 0.01) indicate the creditability levels of significance of estimates of the 
coefficients of double reduction at the fluorescent markers.    
 

Rate of Crossovers in Diploid and Autotetraploid Yeast Genomes 

We further characterized the genome-wide distribution of crossovers generated in heterozygous 

diploid and autotetraploid yeast strains. We first created a heterozygous diploid strain s288c/SK1 

(or hs in abbreviation) from the haploid strains, s288c and SK1, which differ at least at 63,000 SNP 

sites (1 SNP per 190 bp or per 0.06 cM) (Gerton et al. 2000).  We designed autotetraploid strains 

with genome constructs of s288c/SK1/SK1/SK1 (or hsss) and s288c/s288c/s288c/SK1 (or hhhs) 

(Material and Methods). These designed constructs allow crossover detection to be focused on 

the same single chromosome in both diploid and autotetraploid genomes, and thus enable a direct 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

saa219/5902834 by U
niversity of Birm

ingham
 user on 02 N

ovem
ber 2020



Fang O et al 2020 Genome Duplication Increases MRF            Formatted for MBE 

comparison of rate of crossovers (CO) involved with the specific single chromosome between 

diploid and tetraploid genomes. We randomly collected and micro-dissected 5, 3 and 3 tetrads 

generated from the diploid (hs), autotetraploid (hsss) and autotetraploid (hhhs) strains 

respectively using a dissection microscope (SINGER MSM400, UK). These tetrads from 

heterozygous diploid and autotetraploid strains were sequenced using Illumina’s Hiseq 2000 

sequencer with a design of 2 x 100 bp paired end reads.  

 
From the tetrad sequence datasets, we firstly identified the sequence variant marker sites for the 

CO analysis, on which the marker alleles show a 2:2 allele configuration in diploid tetrads (hs), a 

6:2 or 2:6 configuration in tetraploid tetrads (hhhs) or (hsss) respectively, and thus selected an 

average of 47,700 markers from the diploid tetrads and an average of 51,969 markers from the 

tetraploid tetrads for assaying rate of crossovers in these tetrad spores. Use of these selected 

sequence based markers may effectively avoid influence of sequencing errors, errors from data 

processing such as nucleotide calling, sequence reads mapping and the compounding meiotic 

events involving with gene conversion or structural events due to genome instability. A crossover 

was identified as a reciprocal exchange occurring between chromatids marked by the selected 

marker sites (Supplementary Figure 2). We were able to observe crossovers directly from the 

diploid tetrad sequence data and from part of tetraploid tetrad sequence data when linkage phase 

at the linked marker loci can be directly inferred. The COs so derived is referred to as observed 

COs.  

 
However, it is not feasible to call crossovers (COs) directly from the autotetraploid tetrad 

sequence data because any tetrad spore is a diploid and linkage phase may be unknown for any 

spore with a double heterozygote genotype at the flanking sequence markers. We proposed here 

a statistical method for predicting the number of COs per chromatid of an autotetraploid from the 

tetrad sequence data as detailed in Statistical Method 2. Using the method, we calculated the 

expected number of COs for each chromosome in the autotetraploid genomes. The COs so derived 

are referred to as estimated COs.  To further remove those observed COs which may be vulnerable 

to the sequence errors and sequence variants aforementioned, we removed those adjacent 

observed COs if they were separated by < 10kb (Malkova et al 2004).     

 
Figure 2B shows the mean number of COs observed from diploid yeast tetrads and observed plus 

estimated COs from tetraploid tetrads. A t test shows that the mean number of observed COs 

from the tetraploid tetrads was significantly higher than that from the diploid tetrads (P < 0.05). 
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The difference would be significant at a much higher statistical confidence if the comparison is 

made after including the estimated COs of the tetraploid tetrads. It is noted that difference in 

mean observed number of the observed COs (i.e. hhhs and hsss) was not significant between the 

two types of tetraploids (t test with P = 0.8275). Figure 2C (and also Supplementary Table 6) shows 

means of the observed COs for each of sixteen chromosomes of the diploid and tetraploid yeast 

tetrads. A pairwise t test shows significant difference in the mean number of observed COs across 

the sixteen chromosomes between diploid and tetraploid yeasts (P < 0.05), and the corresponding 

test was not significant when comparison was between the two tetraploid types (P = 0.85). 

 

 
Figure 2. (A) The estimated linkage map distance (cM) normalized by the corresponding physical 
map distance (Mbp) and (B) Means of the observed or/and predicted number of crossovers (COs) 
per meiosis of diploids and autotetraploids. (C) The observed number of crossovers (COs) per 
meiosis across 16 chromosomes (I - XVI) from n = 5 diploid tetrads (HS) and n = 6 autotetraploid 
tetrads (hsss or hhhs) yeast S. cerevisae. 
 
 
Comparison in Recombination Interference between Diploid and Autotetraploid Genomes 

It has been well established that recombination does not independently occur along chromosome 

arms, and any recombination at a site may usually prevent others at any nearby sites, the 

phenomenon is so-called Recombination Interference (RI) (Keeney et al. 1997).  RI may be 

attributed to two types of interference, the chromatid interference, where different pairs between 

non-sister chromatids are not equally likely to be involved in formation of crossovers, and the 

position or chiasmata interference, where occurrence of one crossover event at a position along 

the chromosomal bundle affects chance of an additional crossover to occur in a nearby region 

(Mieczkowski et al. 2007). We focus here on the latter, and test for a hypothesis that increased 
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meiotic recombination frequency in the autotetraploid yeast when compared to that in the diploid 

genome is in association with weakened RI.  

 
To test the hypothesis, we created diploid and autotetraploid yeast strains which carried three 

antibiotic markers (NAT, HGY and G418) in simplex dose on the same arm of the yeast 

chromosomes III, VI and VIII, and details of these antibiotic markers are listed together with their 

chromosome locations in Supplementary Table 2. These diploid and autotetraploid strains 

respectively generated the corresponding segregant (gamete) populations. Segregants of the 

diploid strain were haploids but segregants of the autotetraploid are diploids. The antibiotic 

markers are indeed dominant ‘present’ and ‘absent’ markers, and the number of diploid and 

autotetraploid segregants is listed in Supplementary Table 3 together with the phenotype of the 

markers on each of the three yeast chromosomes.      

 
Statistically, recombination interference (RI) is defined as the coincidence coefficient (CC) in 

several different forms, which measures degree of independence of recombination events along 

two adjacent marker intervals flanked by marker loci A, B and C. Let be frequency of 

recombination simultaneously occurring in the two adjacent marker intervals AB and BC.  Let  

 (or ) be frequency of recombination between marker loci A and B with (or without) 

recombination in the interval flanked by markers B and C. The coincidence coefficient can then be 

defined as ,  and . In absence 

of RI, and significant deviation of the coincidence coefficient from the 

expected value of 1.0 implies significance of RI. In populations of the diploid segregants that are 

haploids, recombination events across the antibiotic marker intervals are directly countable, and 

the coincidence coefficients can thus be calculated directly from the marker data and the 

estimates are listed in Table 2.  To test for significance of the CC estimates, we proposed here a 

simulation based method to generate an empirical significant thresholds for the CC estimates’ 

deviation from the null hypothetical value, and assessed significance of deviation of the CC 

estimates from their expected value of 1.0 under the null hypothesis. The simulation mimics 

gametogenesis of any given diploid genotypes at any number of loci assuming independent 

recombination among different chromosomal regions as detailed elsewhere (Luo et al. 2004), and 

the simulation parameters were extracted from the real datasets. It can be seen from Table 2 that 

recombination interference in the diploid data was detected significant in the marked region on 

chromosome III, highly significant on chromosome VI but not significant on chromosome VIII. It is 

AB BCr 

|AB BCr
|AB BC

r

 /AB BC AB BC AB BCc r r r   / | |
/AB BC AB BC AB BC

c r r / | |
/BC AB BC AB BC AB

c r r

| | 1AB BC AB BC BC ABc c c   
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further shown that the CC estimates and their significance were consistent each other, suggesting 

the equivalence and reliability of the CC estimates from the antibiotic marker data.   

 
Table 2 The maximum likelihood estimates of the coincident coefficients ( ˆAB BCc  , /

ˆ
AB BCc  and /

ˆ
BC ABc )  

from diploid and autotetraploid yeast chromosomes III, VI and VIII and the maximum likelihood 

estimates of the coefficient of double reduction (̂ ) and its sampling standard deviation ( ˆs ) at 

each of antibiotic markers (NAT, HGY and G418) on each of the autotetraploid yeast chromosomes 
(III, VI and VIII).  

Diploids Chromosome III Chromosome VI Chromosome VIII 

ˆ
AB BCc   0.8214* 0.5990*** 0.9436 

/
ˆ

AB BCc  0.7695* 0.5727*** 0.9319 

/
ˆ
BC ABc  0.7978* 0.5322*** 0.9241  

 

Autotetraploids NAT HGY G418 NAT HGY G418 NAT HGY G418 

̂  0.0281 0.0506 0.0787 0.0201 0.0718 0.0316 0.0000 0.0315 0.0287 

ˆs  0.0530 0.0531 0.0536 0.0536 0.0536 0.0539 0.0535 0.0535 0.0535 

ˆ
AB BCc   1.0426 1.0376 0.8778 

/
ˆ

AB BCc  1.0593 1.0442 0.8488 

/
ˆ
BC ABc  1.0492 1.0557 0.8414 

* P < 0.05, *** P < 0.001. The P values were calculated from 1,000 permutation simulations.   
 
It is much more sophisticated to model and analyze the marker data for predicting RI from the 

autotetraploid segregants which are diploi  ds because of the possible tetrasomic inheritance at 

the antibiotic markers. We first tested for significance of double reduction at each of the marker 

loci on each of the chromosomes under question. For instance, let  be the coefficient of double 

reduction at a marker locus A. Given an autotetraploid genotype ABBB, the autotetraploid 

generates two types of gametes AB and BB with probabilities  and respectively 

following the principle we previously developed (Luo et al. 2004). In an sample with  of AB and 

 of BB gametes, the maximum likelihood estimate of is given by , and 

sampling variance of the estimate can be calculated as . 

The maximum likelihood estimates of the coefficient of double reduction at the marker loci are 

listed in lower panel of Table 2 together with the corresponding standard deviations. It shows that 

double reduction is not significant on every marker loci, suggesting bivalent pairing of homologous 

chromosomes at the loci under question during meiosis.  

 

(2 ) / 4 (2 ) / 4

1n

2n  2 1 1 2
ˆ 2( ) / ( )n n n n   

2 2 2 2 2
ˆ 1 2(4 ) /[(2 ) (2 ) ]s n n       
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Based on the quadrivalent chromosomal pairing and simplex marker alleles linked on the same 

chromosome, we calculated the coincidence coefficient (CC) from the tetraploid segregant marker 

data. Again, we implemented a simulation based approach to evaluate significance of the CC 

estimates’ deviation from their expected value of 1.0 under the null hypothesis. The simulation 

mimics gametogenesis of any autotetraploid genotype at any number of loci under either bivalent 

pairing or quadrivalent pairing of homologous chromosomes as previously described (Luo et al. 

2004). Specifically, the simulated parental strain had a genotype ABC/abc/abc/abc where the 

capital letters correspond to the three antibiotic marker alleles, and other simulation parameters 

such as the number of segregants and recombination frequencies between the marker loci were 

directly extracted from the real datasets. The simulation was repeated 1,000 times and 

recombination was simulated independently among the two marker intervals. Table 2 shows that 

none of the marked chromosomal regions in the tetraploid yeast was detected to show significant 

recombination interference. Comparison of the RI estimates for the same marked chromosomal 

regions in the same genome but at different ploidy levels indicates that recombination 

interference in the tetraploid yeast genome was significantly weakened when compared to that in 

the corresponding diploid genome.  

 
Double Strand Breaks and Histone Occupation in Diploid and Autotetraploid Genomes 

Crossing over between paired homologous chromosomes in meiosis is initiated by 

developmentally programmed DNA double-strand breaks (DSB), which are catalysed by the 

topoisomerase-like protein Spo11 (Keeney et al. 1997). Change in DSB frequency will thereby 

affect frequency of crossovers and, in turn, recombination frequency (Mieczkowski et al. 2007). In 

the yeast strains with RAD50S mutated, the epitope-tagged Spo11 remains bound to the sheared 

DNA even after completion of DSB. This allows the DNA fragments surrounding the DSB sites to be 

enriched through immuno-precipitation of the Spo11-DNA complex (Gerton et al. 2000; Alani et 

al. 1990; Prieler et al. 2005). On basis of the principle, we compared the density and frequency of 

DSB in the diploid and autotetraploid yeast genomes. Immuno-precipitated Spo11-oligos from 

diploids and autotetraploids were deeply sequenced with two biological replicates for each of the 

two yeast strains. We obtained more than 1.5 million sequence reads of 50bp length for per 

sample. More than 80% of the sequence reads of the sequenced samples (2 biological replicates 

for diploid and tetraploid cells) were uniquely mapped to the genome of the yeast strain SK1, 

suggesting a good quality of the sequencing data. In parallel, genomic DNA from the strain SK1 

was also sequenced as input control with the same sequence depth in order to achieve a 
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comparable number of uniquely mapped sequence reads to that of the corresponding ChIP-seq 

experiment. We split the yeast genome into bins of 1kb and calculated RPKM (reads per kilobases 

per million mapped reads) from the ChIP-seq and input control sequence data of the diploid and 

autotetraploid samples.  

 

The calculated RPKM per bin from the diploid ChIP-seq data was highly significantly positively 

correlated with that from the autotetraploid ChIP-seq data (r = 0.92, P=0), suggesting a high 

degree of consistency in distribution of DSB across the genome between the yeast strains at two 

different ploidy levels (Figure 3A). Among the enriched regions with an enrichment fold change of 

≥ 3 observed in the diploid and autotetraploid samples, there were 443 shared by the two samples 

(Figure 3B), which include previously identified DSB hotspots such as HIS4, HIS2, ARG4, CYS3 etc 

(Gerton et al. 2000).  

 
By sequencing Spo11-bound oligos, Pan et al identified 3,600 DSB hotspots in diploid budding 

yeast (Pan et al. 2011), which included all the 443 enriched bins we detected in the present study. 

We compared the Spo11-oligos between the diploid and tetraploid at the 443 bins and all the 

3,600 hotspots through a paired t test. The test showed the autotetraploid fold enrichment was 

consistently significantly higher than that of the diploid at the 3600 DSB sites (P=3e-22, Figure 3C). 

In contrast, no difference was observed in the fold enrichment at the control sites (1kb 

downstream of the DSB sites, Figure 3D) between the diploid and autotetraploid samples (P = 1.0, 

Figure 3C).  

 
To further validate the ChIP-seq analysis, we compared the DSB density of diploid and 

autotetraploid yeasts at several previously identified sites, one at YCR047C  and two within 3’ 

region of YFR25C (Petes 2001), through the standard Southern blotting assay in which the target 

DNA was detected by the probes labelled with digoxin-11-dUTP. The Southern blotting assay 

shows that DSB density at these sites was markedly higher in the tetraploid than in the diploid 

(Figure 3E), agreeing with that revealed by the ChIP-seq data. Moreover, the higher DSB frequency 

at 3’ region of YFR025C was also confirmed by an additional return-to-growth assay (Figure 3F). 

Additionally, we conducted the return-to-growth assay using genetically modified diploid and 

autotetraploid strains. The diploid strain carried two nonsense mutants, his2-A (blue box) and 

his2-X (purple box) of HIS2, whilst the corresponding autotetraploid carried two combinations of 

the mutant alleles on a chromosome (Figure 3F). The mutant carriers were auxotrophy but would 

recover back to be normal when a functionally normal HIS2+ was created from DSB and the 
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following gene conversion between the two mutant genes on different chromosomes. Thus, 

proportion of the yeast cells carrying the mutant alleles, which could grow on the medium lacking 

of histidine (i.e. HIS2+ carrying cells), reflects the density of DSB surrounding the gene conversion. 

The right panel of Figure 3F shows the percentage of the HIS2+ carrying cells with either a diploid 

or autotetraploid genome and reveals that the autotetraploid yeast had significantly higher 

density of DSB than the diploid cells. This provides further evidence supporting the autotetraploid 

genome has a denser DSB than the diploid and agrees well with the above ChIP-seq and Southern 

blotting assays. 
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Figure 3 ChIP-seq assays of double strand breaks (DSB) and histone occupation in diploid and 
autotetraploid yeast strains. (A) Scatterplot of Log2 transformed RPKM values of input DNA (grey) 
and spo11-oligos at the 443 DSB sites common to both diploid and autotetraploid cells.  (B) The 
number of DSB sites identified from 2 biological replicates of independently cultured diploid and 
autotetraploid cells.  (C) Illustration of ChIP-seq assay at the 3600 DSB sites and control sites of 
1kb downstream of the corresponding DSB sites. (D) Boxplots of RPKM from ChiP-seq assay at the 
3600 DSB sites and the control sites in diploid and tetraploid cells. (E) Southern blotting assay of 
DBS density at three identified sites in genomes of diploid and tetraploid yeasts. (F) Rerun to 
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growth assay of DSB at site HIS2 (or YFR025C). (G) Boxplots of RPKM of micrococcal nuclease 
(MNase)-resistant mononucleosome DNA at the 3600 DSB sites and the control sites in diploid and 
tetraploid cells. 
 

Majority of DSB sites or crossover hotspots are nuclease-hypersensitive and share a common open 

chromatin structure without nucleosome occupation, which are recognized to be necessary for 

Spo11 to access the DNA substrate and break DNA double strands (Petes 2001). The 3,600 DSB 

hotspots aforementioned were also observed to be markedly less occupied by nucleosomes 

(Prieler et al. 2005). We examined the histone occupation landscape in both diploid and 

autotetraploid genomes by sequencing DNA at micrococcal nuclease (MNase)-resistant 

mononucleosomes. The RPKM was calculated for per chromosome from the DNA sequence data 

and compared between the diploids and autotetraploids. The analysis shows that the RPKM of the 

autotetraploids is significantly decreased when compared to that of the diploids at all the 3,600 

DSB sites (P=2.3e-76, Figure 3G), indicating that the autotetraploid chromosomes were less 

wrapped by nucleosomes than the diploid chromosomes. This agrees well with the above ChIP 

based DSB assay and further supports the ploidy driven increase in meiotic recombination 

frequency in budding yeast.   

 
RPKM was proposed to detect differential gene expression between two samples from RNA 

sequence data when total amount of expression is comparable between samples under 

comparison (Evans et al 2018). We implemented the normalization method to compare level of 

Spo11 bound and MNase-resistant oligos at the DSB sites between diploid and tetraploid cells. In 

the Spo11 pulling down ChIP-seq experiment, sequence reads from Spo11 bound or MNase 

resistant oligos account for only 19.13 and 21.96% at the DSB regions or 7.1 and 6.7% of total 

sequence reads at the control regions of the diploid and tetraploid yeast respectively. In the 

MNase-seq experiments, these figures are 3.9 and 3.4% at the DSB regions or 5.0 and 5.1% at the 

control regions (Supplementary Table 7). Additionally, a markedly high level of positive correlation 

in ChIP-seq or MNase-seq data was observed between the diploid and tetraploid yeasts. These 

suggest that the RPKM normalization would be recognized appropriate for comparing the 

sequence data between diploid and tetraploid yeasts in the present study  

 

DISCUSSION 

 This study reports the first comprehensive survey of the ploidy driven change in meiotic 

recombination frequency (MRF) in Saccharomyces cerevisiae. It demonstrates that a significant 
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increase in MRF occurred after genome duplication in all examined regions covering both 

recombination hot and cold spots on all 16 yeast chromosomes. Given that formation of 

crossovers is a prerequisite for recombination, we assayed profile of crossovers on the all 16 

chromosomes of the diploid and tetraploid yeast genomes using genome sequencing and found 

that rate of crossovers is, on single chromosome basis, highly significantly higher in the 

autotetraploid genome than in the corresponding diploid genome. It should be acknowledged that 

crossing over and gene conversion are associated in meiosis. Gene conversion and crossing over 

may be regulated independently, and crossing over may involve interference but gene conversion 

may not (Engebrecht et al 1990). The present tetrad sequence data should allow to work out the 

rate of gene conversion in addition to the rate of crossovers. However, tetraploid tetrads are 

diploids and how to estimate gene conversion from the tetraploid tetrad sequence data remains 

an open question for further exploitation.      

 
To explain the ploidy driven increase in MRF, we compared level of recombination interference (RI) 

between diploid and tetraploid genomes and observed that RI is a clearly weakened in the 

genomic regions investigated. Additionally, a Spo11 pulled down DNA sequencing experiment 

indicates a significantly higher frequency of single chromosome based double-strand breaks (DSB) 

in the tetraploid genome than in the corresponding diploid counterpart at the 443 commonly 

shared and previously identified sites in meiosis of both the diploid and tetraploid yeasts. The 

observation from the ChIP-seq data is further verified independently by the Southern blotting 

assay and Return to growth experiment. DNA sequence data collected at micrococcal nuclease 

(MNase)-resistant mononucleosomes shows that the tetraploid chromosomes are comparatively 

less wrapped by nucleosomes than the diploid chromosomes, having provided the structural basis 

for the difference in DSB frequency between the diploid and tetraploid genomes. Although there 

has yet been mechanistic explanation for association of genome duplication with nucleosome 

occupancy to our best knowledge, it has been well established that genome duplication is in 

parallel with the dynamic alteration in genome structure and functionality such as genome wide 

gene expression and phenotypic change (Song et al 1995, Comai et al 2005). On the other hand, 

nucleosome occupancy is partially encoded by intrinsic antinucleosomal DNA sequences as well as 

by binding sites for trans-acting factors that can evict nucleosomes in yeast (Jiang and Pugh 2009). 

Moreover, binding site gain or loss events at nucleosome depleted regions in yeast genome may 

cause more expression differences than those in nucleosome occupied regions (Swamy et al 2011). 
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Thus, the present study could stimulate further study to elucidate the molecular mechanism 

underpinning genome duplication associated change in nucleosome occupancy.  

 
Although it has been theoretically predicted that meiotic recombination would be more frequent 

in tetraploids than in diploids (Sved 1964), there are only a few experimental studies of limited 

scale by far performed to test this theoretical prediction (Oram 1959; Welch 1962). More recently, 

Pecinka et al compared frequency of meiotic recombination of two fluorescent makers between 

diploid and artificially synthesized tetraploid in Arabidopsis (Pecinka et al. 2011), and concluded a 

higher recombination frequency at the marked chromosomal interval in tetraploid than in diploid. 

In fact, appropriate statistical methods for linkage analysis under a tetrasomic inheritance model 

are essential for statistically appropriate evaluation of genetic recombination frequency ((Wang 

and Luo 2012). One of other important distinctions of the present study from its rivals in the 

literature is the development of statistically appropriate methods for modeling and analyzing the 

experimental data under a tetrasomic inheritance basis. This not only enables the data specific 

analysis in the present study but also provides useful analytical tools for the tetrasomic linkage 

and genetic analyses with other tetraploid species.      

  
Meiotic recombination is the major mechanism for genetic variation blocked within individual 

genomes to be released for natural and artificial selection, and thus is recognized as one of major 

driving factors for the evolution and/or speciation (Otto and Barton 1997) as well as for breaking 

limits of artificial selection (Hill and Robertson 2007). On the other hand, polyploidy has played an 

important role in the evolution of eukaryotes, particularly flowering plants, with 30-80% of 

angiosperms being currently polyploid, and the rest existing as paleopolyploids, having evolved 

from and/or reverted to a diploid state over evolutionary time (Otto and Whitton 2000). It has 

been well established that a genome in polyploidy has three distinct advantages. Firstly, a high 

level of heterozygosity maintained enables polyploids to be more vigorous than their diploid 

progenitors. Secondly, a larger number of segregating alleles shield the polyploid genome from 

deleterious mutation. Thirdly, if not finally, most polyploids may reproduce asexually and thus can 

be propagated much efficiently into large populations (Comai 2005).  In addition to these, the 

present study contributes a significant feature to polyploidization through genome duplication, i.e. 

the significantly increased meiotic recombination frequency. Thus, the present study, on one hand, 

fills a gap between plolyploidization and evolution of species via the significant effect of genome 

duplication on the genome’s recombination frequency, and on the other, opens an opportunity for 
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artificial manipulation of meiotic recombination through polyploidization breeding, as has been 

seeking for by plant scientists and breeders for many years (Henderson 2012).   

 
MATERIAL AND METHODS 

All strains used in this study were isogenic to s288c and SK1. Autotetraploids were constructed 

through fusion between the mating-type switched a/a and / diploids, which were induced and 

screened from the normal a/ diploids transformed with pTetra plasmid, as described in our 

previous study (Fang et al. 2018). Fluorescent and antibiotic markers were generated by using of 

PCR, transformed into strains through the PEG-LiAC method and inserted into predesigned loci of 

chromosomes. Unless specified, both wild type and genetically modified strains were grown in the 

standard rich medium YPD (1% yeast extract, 2% polypeptone, 2% glucose, plus 2% agar if 

necessary). Meiosis was induced in the SPM medium (1% potassium acetate, plus 2% agar if 

necessary). Mating type switch was stimulated in YPGal (1% yeast extract, 2% polypeptone, 2% 

galactose, 2% ranffinose). Test strains were synchronized at the same meiosis stage in the YPG 

plates (3% glycerol, 2% polypeptone, 1% yeast extract, 2% agar) and SPS medium (1% potassium 

acetate, 1% w/v polypeptone, 0.5% yeast extract, 0.17% yeast nitrogen base with ammonium 

sulfate and without amino acids, 0.5% ammonium sulfate, 0.05M potassium biphtalate, 2 drops 

per liter antifoam, pH to 5.5 with 10 N KOH). The ChIP-seq and MNase-seq assay was implemented 

according to the classic protocol, but with minor modification (Prieler et al. 2005; Kaplan et al. 

2009). Detailed description of all experimental materials and methods used can be found in 

Supplementary Information.  

 
Statistical Method 1 Statistical modelling and analysis of the fluorescent maker data 

To model and analyze the fluorescent marker data collected from the diploid and autotetraploid 

segregating populations, we proposed here the probabilistic models for modelling the marker data 

and statistical methods for analyzing the datasets. The model and statistical methods have 

properly accounted for the key features of disomic and tetrasomic inheritance of gene segregation 

and recombination and solved properly the challenges in the statistical analysis. Our formulation 

here focuses on the autotetraploids. We considered a general tetraploid genotype at two loci, 

A1A2A3A4/B1B2B3B4, and assumed that the alleles at the two loci are linked with a recombination 

frequency r, and the coefficient of double reduction at locus A is a. We have worked out the 

probability distribution of 136 possible diploid gamete genotypes generated by the autotetraploid 

individual genotype in term of r and a (Table 1 in Luo et al 2004). In the present context, we 

worked out the probability distribution of 10 possible diploid gamete genotypes generated by the 
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parental genotype, GBBB/RCCC by setting A1 = G, B1 = R, A2 = A3 = A4 = B and B2 = B3 = B4 = C and 

summing up the corresponding genotype frequencies for the same gamete genotype. Table 1 lists 

the probability distribution for the 10 gamete genotype ( , )ig r (i = 1, 2, …, 10), which describes 

the probability distribution of the genotypes in the yeast tetrad spore population created in the 

study.  However, genotypes of the diploid spores cannot be directly observable but the spores can 

be grouped according to four possible fluorescent phenotype classes (yellow, green, red and black). 

Probabilities of the phenotype groups are given as 

 

 

1 2 3 4 5

2 2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

1
             2(3 3 ) (3 6 5 )

12

yf r g r g r g r g r g r

r r r r

     



    

       

     (1) 

   6 7( , ) ( , ) ( , ) 6 2 (6 5 )
12

g

r
f r g r g r r r             (2) 

 
8 9

1
( , ) ( , ) ( , ) (2 ) (6 )

36
rf r g r g r r r             (3) 

 2

10

1
( , ) ( , ) (2 )(3 )

36
bf r g r r            (4) 

 

Let 
in  denote by the number of diploid spores with the ith phenotype (i = 1, 2, 3, 4 corresponding 

to y, g, r, b respectively) and 
1 2 3 4n n n n n    . The log-likelihood of the model parameters,  

and r, given the observed 'in s , is given by 

4

1

( , | ) log[ ( , )]i i i
i

L a r n n f a r


         (5) 

 
Because a indicates the coefficient of double reduction at the locus nearer to the centromere, 

information about segregation of alleles at the locus is sufficient to estimate the parameter [21]. 

To work out the double reduction parameter, we set r = 0 in the likelihood function (5), solved the 

equation  

 

1 2 1 2 3 4 3 4( ) {log[ ( ,0) ( ,0)]}/ ( ) {log[ ( ,0) ( ,0)]}/ 0              n n f f n n f f (6) 

 

for , and obtained the maximum likelihood (MLE)  

 

3 4 1 2
ˆ 2( ) /n n n n n             (7) 

 

The asymptotic sampling variance of the MLE can be calculated according to the Fisher’s 

information metric from 
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12 2 2 2

1 2 1 2 3 4 3 4 ˆ

1 2 3 4

( ) {log[ ( ,0) ( ,0)]}/ ( ) {log[ ( ,0) ( ,0)]}/

  16 ( )( ) /

 
     




           

   

n n f f n n f f

n n n n n
 (8)  

 
The formulation can be modified by exchanging between 

1( ,0)f   and 
2( ,0)f  and also 

exchanging between 
2n  and 

3n to calculate ̂ , the coefficient of double reduction at the red 

fluorescent locus, which is distal to the centromere in the model.  

 
We calculated the MLE of recombination frequency r directly from solving ˆ( , | ) 0iL a r n r   , 

which is equivalent to a polynomial equation of grade 5 and has no a simple and close form for the 

solution. The equation can be numerically solved and the root within in the range 0.0 and 0.75 was 

taken as the MLE r̂ . The asymptotic sampling variance for r̂  can be calculated from 

2 2

ˆ
ˆ1 ( , | ) /i r r

L a r n r


     . 

 

Distribution of phenotype at the single marker locus is given by | ( ) (4 ) /12GRf    and 

( ) (8 ) /12Bf    for the individuals with and without carrying the fluorescent marker 

respectively. If the number of the two groups of individuals is denoted by n1 and n2 respectively,   

 

Statistical Method 2 Predicting the average number of crossovers from tetraploid gamete data 

Consider a marker interval and let  be the coefficient of double reduction at the flanking marker 

locus, which is nearer to the centromere, and p represents the probability of 1 crossover in the 

marker interval. We focused here gametogenesis of an autotetraploid individual with the 

genotype, AB/ab/ab/ab, with A and B corresponding to s288c (SK1) alleles, and a and b to SK1 (or 

s288c) alleles in the autotetraploid strain s288c/SK1/SK1/SK1 (or SK1/s288c/s288c/s288c). We 

considered the crossover occurring between all possible non-sister chromatids and all possible 

configurations of diploid gamete generation under a tetrasomic model, and worked out 

distribution of phenotype of five possible tetrads at the two marker loci in term of  and p, which 

was listed as Supplementary Table 4. In the distribution, a tetrad phenotype was presented as two 

sequential integers representing two chromosomes. A non-zero integer in the sequence 

represented the number of A or B alleles and the four integers referred to the four spores. 

 

For a sample of n tetrads, let ni (i=1,2,...,5) be the number of tetrads with the ith marker phenotype.  

The log-likelihood of the model parameters,  and p, given the observed ni is given by 
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5

1 2 3
1

4 5

( , | ) log( ) log{ (1 / 2)} log{(1 )(1 5 /12)} log{ / 2}

log{(1 ) /12} log{(1 ) / 3}

i i i
i

L p n n f n p n p n p

n p n p

   

 


       

  


(9) 

 
Differentiating the above and solving the normal equation led to the maximum likelihood estimate 

of p as  

 1 2
ˆ 11 5 6 5p n n n n            (10) 

with 2 2

1 2 1 22 (5 6 ) (5 6 )n n n n n n     . Choice of the alternatives is feasible because a 

meaningful estimate of p must fall in [0, 1]. Sum of estimates of p over all marker intervals on a 

chromosome gives an estimate of expected number of crossovers of that chromosome. 
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