5,329 research outputs found

    Dynamic disorder in receptor-ligand forced dissociation experiments

    Full text link
    Recently experiments showed that some biological noncovalent bonds increase their lifetimes when they are stretched by an external force, and their lifetimes will decrease when the force increases further. Several specific quantitative models have been proposed to explain the intriguing transitions from the "catch-bond" to the "slip-bond". Different from the previous efforts, in this work we propose that the dynamic disorder of the force-dependent dissociation rate can account for the counterintuitive behaviors of the bonds. A Gaussian stochastic rate model is used to quantitatively describe the transitions observed recently in the single bond P-selctin glycoprotein ligand 1(PSGL-1)−-P-selectin force rupture experiment [Marshall, {\it et al.}, (2003) Nature {\bf 423}, 190-193]. Our model agrees well to the experimental data. We conclude that the catch bonds could arise from the stronger positive correlation between the height of the intrinsic energy barrier and the distance from the bound state to the barrier; classical pathway scenario or {\it a priori} catch bond assumption is not essential.Comment: 4 pages, 2 figure

    Adaptive online deployment for resource constrained mobile smart clients

    Get PDF
    Nowadays mobile devices are more and more used as a platform for applications. Contrary to prior generation handheld devices configured with a predefined set of applications, today leading edge devices provide a platform for flexible and customized application deployment. However, these applications have to deal with the limitations (e.g. CPU speed, memory) of these mobile devices and thus cannot handle complex tasks. In order to cope with the handheld limitations and the ever changing device context (e.g. network connections, remaining battery time, etc.) we present a middleware solution that dynamically offloads parts of the software to the most appropriate server. Without a priori knowledge of the application, the optimal deployment is calculated, that lowers the cpu usage at the mobile client, whilst keeping the used bandwidth minimal. The information needed to calculate this optimum is gathered on the fly from runtime information. Experimental results show that the proposed solution enables effective execution of complex applications in a constrained environment. Moreover, we demonstrate that the overhead from the middleware components is below 2%

    Do topology and ferromagnetism cooperate at the EuS/Bi2_2Se3_3 interface?

    Full text link
    We probe the local magnetic properties of interfaces between the insulating ferromagnet EuS and the topological insulator Bi2_2Se3_3 using low energy muon spin rotation (LE-μ\muSR). We compare these to the interface between EuS and the topologically trivial metal, titanium. Below the magnetic transition of EuS, we detect strong local magnetic fields which extend several nm into the adjacent layer and cause a complete depolarization of the muons. However, in both Bi2_2Se3_3 and titanium we measure similar local magnetic fields, implying that their origin is mostly independent of the topological properties of the interface electronic states. In addition, we use resonant soft X-ray angle resolved photoemission spectroscopy (SX-ARPES) to probe the electronic band structure at the interface between EuS and Bi2_2Se3_3. By tuning the photon energy to the Eu anti-resonance at the Eu M5M_5 pre-edge we are able to detect the Bi2_2Se3_3 conduction band, through a protective Al2_2O3_3 capping layer and the EuS layer. Moreover, we observe a signature of an interface-induced modification of the buried Bi2_2Se3_3 wave functions and/or the presence of interface states

    No-cloning theorem and teleportation criteria for quantum continuous variables

    Full text link
    We discuss the criteria presently used for evaluating the efficiency of quantum teleportation schemes for continuous variables. Using an argument based upon the difference between 1-to-2 quantum cloning (quantum duplication) and 1-to-infinity cloning (classical measurement), we show that a fidelity value larger than 2/3 is required for successful quantum teleportation of coherent states. This value has not been reached experimentally so far.Comment: 4 pages, 1 figure, submitted to Phys. Rev.

    Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates.

    Get PDF
    As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism

    Exposure to fine aerosols in sleeping environments of Lisbon dwellings

    Get PDF
    Trabalho apresentado em European Aerosol Conference 2023 (EAC2023), September 3−8, 2023, Malaga, SpainN/
    • …
    corecore