466 research outputs found

    Novel measures of inflammation and insulin resistance are related to obesity and fitness in a diverse sample of 11-14 year-olds:The HEALTHY Study

    Get PDF
    BACKGROUND: GlycA is a novel serum marker of systemic inflammation. There is no information on GlycA in pediatric populations, how it differs by gender or its association with body mass index (BMI) or fitness. LP-IR is a serum measure of insulin resistance which is related to changes in BMI group in adolescents, but its relationship with fitness is unknown. The current study examined the independent associations between fitness and BMI with GlycA and LP-IR among US adolescents. METHODS: Participants were 1664 US adolescents from the HEALTHY study with complete 6th and 8th grade BMI, fitness and blood data. GlycA and LP-IR were measured by NMR spectroscopy. Three BMI groups and three fitness groups were created. Linear mixed models examined associations between GlycA, LP-IR, fitness and BMI. RESULTS: LP-IR decreased between 6th and 8th grade. GlycA increased among girls but decreased among boys. At 8th grade, median GlycA values were 27 (7.6%) μmol/l higher (381 versus 354) for girls than boys. Median GlycA 6th grade values were 9% higher in obese girls than healthy weight girls. Overall there was strong evidence (P CONCLUSIONS: GlycA was associated with BMI and fitness among in US adolescents. These findings suggest that there are independent effects for BMI and fitness group with both GlycA and LP-IR. Future studies should validate the role of GlycA and LP-IR to evaluate the effects of interventions to modify obesity and fitness in order to improve systemic inflammation and insulin resistance.International Journal of Obesity accepted article preview online, 04 May 2016. doi:10.1038/ijo.2016.84

    Achieving Secondary Prevention Low-Density Lipoprotein Particle Concentration Goals Using Lipoprotein Cholesterol-Based Data

    Get PDF
    BACKGROUND: Epidemiologic studies suggest that LDL particle concentration (LDL-P) may remain elevated at guideline recommended LDL cholesterol goals, representing a source of residual risk. We examined the following seven separate lipid parameters in achieving the LDL-P goal of <1000 nmol/L goal for very high risk secondary prevention: total cholesterol to HDL cholesterol ratio, TC/HDL, <3; a composite of ATP-III very high risk targets, LDL-C<70 mg/dL, non-HDL-C<100 mg/dL and TG<150 mg/dL; a composite of standard secondary risk targets, LDL-C<100, non-HDL-C<130, TG<150; LDL phenotype; HDL-C ≥ 40; TG<150; and TG/HDL-C<3. METHODS: We measured ApoB, ApoAI, ultracentrifugation lipoprotein cholesterol and NMR lipoprotein particle concentration in 148 unselected primary and secondary prevention patients. RESULTS: TC/HDL-C<3 effectively discriminated subjects by LDL-P goal (F = 84.1, p<10(-6)). The ATP-III very high risk composite target (LDL-C<70, nonHDL-C<100, TG<150) was also effective (F = 42.8, p<10(-5)). However, the standard secondary prevention composite (LDL-C<100, non-HDL-C<130, TG<150) was also effective but yielded higher LDL-P than the very high risk composite (F = 42.0, p<10(-5)) with upper 95% confidence interval of LDL-P less than 1000 nmol/L. TG<150 and TG/HDL-C<3 cutpoints both significantly discriminated subjects but the LDL-P upper 95% confidence intervals fell above goal of 1000 nmol/L (F = 15.8, p = 0.0001 and F = 9.7, p = 0.002 respectively). LDL density phenotype neared significance (F = 2.85, p = 0.094) and the HDL-C cutpoint of 40 mg/dL did not discriminate (F = 0.53, p = 0.47) alone or add discriminatory power to ATP-III targets. CONCLUSIONS: A simple composite of ATP-III very high risk lipoprotein cholesterol based treatment targets or TC/HDL-C ratio <3 most effectively identified subjects meeting the secondary prevention target level of LDL-P<1000 nmol/L, providing a potential alternative to advanced lipid testing in many clinical circumstances

    Exercise Training Amount and Intensity Effects on Metabolic Syndrome (From Studies of a Targeted Risk Reduction Intervention through Defined Exercise)

    Get PDF
    Although exercise improves individual risk factors of the metabolic syndrome (MS), there is little research on the effect of exercise on MS as a whole. The objective of this study was to determine how much exercise is recommended to reduce the prevalence of MS. Of 334 subjects randomized, 227 finished and 171 (80 women, 91 men) had complete data for all 5 Adult Treatment Panel III- defined MS risk factors and were included in this analysis. Subjects were randomly assigned to a six-month control or 1 of 3 eight-month exercise training groups: 1) low-amount/moderate-intensity (equivalent to walking ~19 km/week); 2) low-amount/vigorous-intensity (equivalent to jogging ~19 km/week); 3) high-amount/vigorous-intensity (equivalent to jogging ~32 km/week). The low- amount/moderate-intensity exercise prescription improved MS relative to inactive controls (p<0.05). However, the same amount of exercise at a vigorous intensity was not significantly better than inactive controls, suggesting that lower intensity exercise may be more effective in improving MS. The high-amount/vigorous-intensity group improved MS relative to controls (p<0.0001), the low- amount/vigorous-intensity group (p=0.001), and the moderate intensity group (p=0.07), suggesting an exercise dose effect. In conclusion, a modest amount of moderate intensity exercise, in the absence of dietary changes, significantly improved MS and thus supports the recommendation that adults get 30 minutes of moderate intensity exercise every day. A higher amount of vigorous exercise was shown to have greater and more widespread benefits. Finally, there is an indication that moderate intensity may be better than vigorous intensity exercise for improving MS. Originally published American Journal of Cardiology, Vol. 100, No. 12, Dec 200

    Effect of Relative Weight Group Change on Nuclear Magnetic Resonance Spectroscopy Derived Lipoprotein Particle Size and Concentrations among Adolescents

    Get PDF
    To examine whether longitudinal changes in relative weight category (as indicated by change in BMI classification group) were associated with changes in nuclear magnetic resonance (NMR) derived lipoprotein particles among US youth

    A novel inflammatory biomarker, GlycA, associates with disease activity in rheumatoid arthritis and cardio-metabolic risk in BMI-matched controls

    Get PDF
    Abstract Background RA and CVD both have inflammation as part of the underlying biology. Our objective was to explore the relationships of GlycA, a measure of glycosylated acute phase proteins, with inflammation and cardiometabolic risk in RA, and explore whether these relationships were similar to those for persons without RA. Methods Plasma GlycA was determined for 50 individuals with mild-moderate RA disease activity and 39 controls matched for age, gender, and body mass index (BMI). Regression analyses were performed to assess relationships between GlycA and important markers of traditional inflammation and cardio-metabolic health: inflammatory cytokines, disease activity, measures of adiposity and insulin resistance. Results On average, RA activity was low (DAS-28 = 3.0 ± 1.4). Traditional inflammatory markers, ESR, hsCRP, IL-1β, IL-6, IL-18 and TNF-α were greater in RA versus controls (P < 0.05 for all). GlycA concentrations were significantly elevated in RA versus controls (P = 0.036). In RA, greater GlycA associated with disease activity (DAS-28; RDAS-28 = 0.5) and inflammation (RESR = 0.7, RhsCRP = 0.7, RIL-6 = 0.3: P < 0.05 for all); in BMI-matched controls, these inflammatory associations were absent or weaker (hsCRP), but GlycA was related to IL-18 (RhsCRP = 0.3, RIL-18 = 0.4: P < 0.05). In RA, greater GlycA associated with more total abdominal adiposity and less muscle density (Rabdominal-adiposity = 0.3, Rmuscle-density = −0.3, P < 0.05 for both). In BMI-matched controls, GlycA associated with more cardio-metabolic markers: BMI, waist circumference, adiposity measures and insulin resistance (R = 0.3-0.6, P < 0.05 for all). Conclusions GlycA provides an integrated measure of inflammation with contributions from traditional inflammatory markers and cardio-metabolic sources, dominated by inflammatory markers in persons with RA and cardio-metabolic factors in those without

    Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5

    Get PDF
    Coronary artery disease (CAD), and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C). Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals) from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage) and less dense spacing (one SNP per 50 kb) for the flanking regions (117.7-126.6 and 160.2-167.5 MB) and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN) and the quantitative trait transmission disequilibrium test (QTDT; GENECARD). SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype) using linkage and association in the presence of linkage (APL; GENECARD) and logistic regression (CATHGEN and aortas)
    corecore