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A novel inflammatory biomarker, GlycA,
associates with disease activity in
rheumatoid arthritis and cardio-metabolic
risk in BMI-matched controls
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Abstract

Background: RA and CVD both have inflammation as part of the underlying biology. Our objective was to explore
the relationships of GlycA, a measure of glycosylated acute phase proteins, with inflammation and cardiometabolic
risk in RA, and explore whether these relationships were similar to those for persons without RA.

Methods: Plasma GlycA was determined for 50 individuals with mild-moderate RA disease activity and 39 controls
matched for age, gender, and body mass index (BMI). Regression analyses were performed to assess relationships
between GlycA and important markers of traditional inflammation and cardio-metabolic health: inflammatory
cytokines, disease activity, measures of adiposity and insulin resistance.

Results: On average, RA activity was low (DAS-28 = 3.0 ± 1.4). Traditional inflammatory markers, ESR, hsCRP, IL-1β,
IL-6, IL-18 and TNF-α were greater in RA versus controls (P < 0.05 for all). GlycA concentrations were significantly
elevated in RA versus controls (P = 0.036). In RA, greater GlycA associated with disease activity (DAS-28; RDAS-28 = 0.5)
and inflammation (RESR = 0.7, RhsCRP = 0.7, RIL-6 = 0.3: P < 0.05 for all); in BMI-matched controls, these inflammatory
associations were absent or weaker (hsCRP), but GlycA was related to IL-18 (RhsCRP = 0.3, RIL-18 = 0.4: P < 0.05). In RA,
greater GlycA associated with more total abdominal adiposity and less muscle density (Rabdominal-adiposity = 0.3,
Rmuscle-density = −0.3, P < 0.05 for both). In BMI-matched controls, GlycA associated with more cardio-metabolic
markers: BMI, waist circumference, adiposity measures and insulin resistance (R = 0.3-0.6, P < 0.05 for all).

Conclusions: GlycA provides an integrated measure of inflammation with contributions from traditional inflammatory
markers and cardio-metabolic sources, dominated by inflammatory markers in persons with RA and cardio-metabolic
factors in those without.

Keywords: Rheumatoid arthritis, Inflammation, Biomarker, Metabolic syndrome, Glycosylation

Background
Rheumatoid arthritis (RA) is a chronic inflammatory
autoimmune disease that, when left uncontrolled, leads
to debilitating alterations in joint function. Therefore, it
is not uncommon for patients with RA to be physically
inactive, leading to increased adiposity, body mass index
(BMI), and insulin resistance [1]. Recently, we showed

that reduced skeletal muscle insulin sensitivity in RA
patients is more likely due to traditional metabolic risk
factors such as adiposity than to systemic inflammation
or disease-related factors [2]. Given the multiple poten-
tial contributors to progression to type 2 diabetes melli-
tus (T2DM) and known increased prevalence (2–3-fold)
of cardiovascular disease (CVD) in RA, a holistic bio-
marker of risk of these conditions would be extremely
useful for targeting appropriate early preventive and
treatment strategies [3–6].
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GlycA is a marker of inflammation measured by
nuclear magnetic resonance (NMR) spectroscopy that
has been shown to be associated with cardiometabolic
disease and mortality [7–12]. The GlycA NMR signal
arises largely from the N-acetyl glucosamine residues on
the carbohydrate side-chains of acute phase proteins
such as α1-acid glycoprotein, α1-antitrypsin, α1-antichy-
motrypsin, haptoglobin, and transferrin [7]. This com-
posite NMR signal, termed “GlycA,” has been shown to
be strongly associated with both incident CVD and inci-
dent T2DM in the Women’s Health Study (WHS) and
the Prevention of Renal and Vascular End-stage Disease
study (PREVEND) as well as with all-cause mortality in
the WHS and Justification for the Use of Statin in Pre-
vention: An Intervention Trial Evaluating Rosuvastatin
(JUPITER), even after adjusting for traditional risk fac-
tors [8–10]. Recently, GlycA was elevated compared with
controls and related to RA disease activity and coronary
calcium scores in persons with RA [13] as well as in pa-
tients with systemic lupus erythematosus [14]. With this
in mind, we sought to better understand whether GlycA
was associated with markers of inflammation and cardio-
metabolic risk in a cohort of RA patients who were exten-
sively characterized for disease activity, adiposity, and
insulin sensitivity.

Methods
Participants and design
The study design and procedures have been reported
previously [2]. Briefly, this study was designed as a
cross-sectional comparison of insulin sensitivity between
persons with RA and controls matched for age (±3 years),
sex, race, and BMI (±3 kg/m2). Persons with RA were
either seropositive or had erosions on radiographs, met
1987 American College of Rheumatology criteria for RA
[15], had no medication changes in the last 3 months,
and were using stable doses of prednisone of 5 mg per
day or less. Exclusions were known diabetes mellitus or
CVD. A total of 50 subjects with RA and 39 matched
controls were recruited consecutively and included in
this study. All participants signed an informed consent.
The study was approved by the Duke University Medical
Center Institutional Review Board.

Assessments
We previously described methods for determining dis-
ease activity (Disease Activity Score with 28-joint count
using the erythrocyte sedimentation rate (DASESR-28)),
pain (visual analog scale), disability (Health Assessment
Questionnaire—Disability Index (HAQ-DI)), insulin sen-
sitivity indices from frequently sampled intravenous
glucose tolerance tests (IVGTTs), and fasting glucose,
insulin, and inflammatory marker concentrations [2].
Abdominal and thigh adipose depots were determined

as described previously [2] using single 10-mm-thick
axial computed tomography (CT) scan sections in the
liver, mid-abdomen at L4, and mid-thigh (General
Electric CT/I scanner; GE Medical Systems, Milwaukee,
WI, USA).

GlycA measurements
NMR spectra were acquired from ethylenediamine-
tetraacetic acid plasma samples as described previously
for the NMR LipoProfile® (lipoprotein particle) test at
LipoScience (now LabCorp, Raleigh, NC, USA) [16]. The
GlycA NMR signal (2.00 ± 0.01 ppm) was quantified as
described previously, using a proprietary software algo-
rithm [17]. Briefly, the NMR signal amplitudes originate
from highly mobile N-acetyl methyl group protons of the
N-acetylglucosamine moieties located on the carbohydrate
side-chains of circulating plasma proteins (predominantly
α1-acid glycoprotein, haptoglobin, α1-antitrypsin, α1-antic-
hymotrypsin, and transferrin) were used to calculate the
concentrations of GlycA (in μmol/l of N-acetyl methyl
groups). The intra-assay and inter-assay variability for
GlycA measurement is 1.9 % and 2.6 %, respectively [7].

Statistical analyses
All analyses were conducted using SAS 9.4 (SAS Insti-
tute Inc., Cary, NC, USA) except for Fisher transforma-
tions. Strengths of GlycA associations for the two
groups (RA and controls) were compared with Fisher r
to z transformations, computed using an online calcula-
tor [17]. Normality was assessed with Kolmogorov–
Smirnov goodness of fit testing. Differences between
groups were assessed by either independent t tests or
Mann–Whitney nonparametric tests depending on nor-
mality. Bivariate associations were assessed with Spear-
man correlations. Non-normally distributed variables
with significant correlations were logarithmically trans-
formed and multivariable modeling was performed using
linear models with forward stepwise selection. Signifi-
cance was accepted at P <0.05.

Results
Participants were matched for age, gender, and BMI, and
thus no differences were observed for measures of car-
diometabolic risk including adiposity (P >0.05 for all),
except for fasting glucose which was slightly lower in
RA patients (P = 0.018). As reported previously, persons
with RA had a range of disease activity (DASESR-28
range = 0.6–6.4), but on average disease activity was mild
to moderate (mean ± standard deviation DASESR-28 =
3.0 ± 1.4) [2]. As expected, measures of inflammation,
erythrocyte sedimentation rate (ESR), high-sensitivity C-
reactive protein (hsCRP), interleukin (IL)-1β, IL-6, IL-18,
and tumor necrosis factor alpha (TNFα) concentrations
were greater in persons with RA as compared with
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matched controls (Table 1; P <0.05 for all) while IL-8 was
lower (Table 1; P = 0.027). GlycA concentrations were
greater in persons with RA than matched controls (Fig. 1;
GlycA 352.8 ± 67.2 vs. 328.9 ± 53.5 μmol/l, P = 0.036).
Among persons with RA (n = 50), GlycA concentrations

were related positively to ESR (r = 0.71, P <0.001), hsCRP
(r = 0.73, P <0.001), and disease activity (DASESR-28;
r = 0.54, P <0.001), but not to pain or disability (Table 2).
Of other circulating markers of inflammation, GlycA was
related to IL-6 (r = 0.28, P <0.05) but not to IL-1β, IL-8,
IL-18, or TNFα. Positive associations were observed
between GlycA and total abdominal adiposity (r = 0.31,
P <0.04) and fasting glucose (r = 0.35, P <0.01) while
less thigh muscle density was associated with more
GlycA (r = −0.33, P <0.02). In a multivariable model for
persons with RA, hsCRP, ESR, and thigh muscle density
were each related independently to GlycA, and together
explained 74 % of the variance in GlycA (P <0.001,
RhsCRP = 0.59, RESR = 0.11, Rthigh muscle density = 0.05; Table 3).

Table 1 Participant demographics, clinical characteristics,
and inflammation

Rheumatoid arthritis
(n = 50)

Controls
(n = 39)

Age (years) 55.4 ± 12.8 52.1 ± 11.4

Gender

Female 35 (70 %) 27 (69 %)

Male 15 (30 %) 12 (31 %)

Race

Pacific Islander 1 (2 %) 0 (0 %)

African American 14 (28 %) 12 (31 %)

Caucasian 35 (70 %) 27 (69 %)

Clinical characteristics

BMI (kg/m2) 30.5 ± 7.5 29.0 ± 5.3

Waist circumference (cm) 95.3 ± 16.7 85.0 ± 27.9

HAQ-DI 0.7 ± 0.7*** 0 ± 0

Pain (VAS) (mm) 40.1 ± 28.9*** 9.8 ± 2.4

Comorbidity index 1.6 ± 1.2** 0.6 ± 0.9

DASESR-28 3.0 ± 1.4 NA

Remission (DAS <2.6) 19 (40 %)

Low activity (DAS 2.6–3.2) 8 (17 %)

Moderate activity (DAS 3.2–5.1) 16 (33 %)

High activity (DAS >5.1) 5 (10 %)

RF positive 41/46 NA

Anti-CCP positive 20/21 NA

Radiograph erosions present 21/38 NA

Medication use

Etanercept 10 (20 %) NA

Infliximab 2 (4 %) NA

Adalimumab 5 (10 %) NA

Abatacept 5 (10 %) NA

Methotrexate 38 (76 %) NA

Leflunomide 1 (2 %) NA

Sulfasalazine 0 NA

Hydroxychloroquine 10 (20 %) NA

NSAID 18 (36 %) NA

Prednisone 12 (24 %) NA

Systemic inflammation (mean ± SEM)

ESR (mm/hour) 11.9 ± 1.7* 7.6 ± 2.6

hsCRP (mg/l) 7.9 ± 1.2** 3.2 ± 0.7

IL-1β (pg/ml) 0.8 ± 0.2* 0.7 ± 0.2

IL-6 (pg/ml) 19.8 ± 7.3*** 3.1 ± 0.3

IL-8 (pg/ml) 10.9 ± 1.1* 17.8 ± 8.0

IL-18 (pg/ml) 464.2 ± 21.1** 390.8 ± 21.8

TNFα (pg/ml) 31.5 ± 5.0*** 11.4 ± 8.6

Table 1 Participant demographics, clinical characteristics,
and inflammation (Continued)

Metabolic

Fasting insulin (mU/l) 7.5 ± 7.5 7.5 ± 5.6

Fasting glucose (mg/dl) 89.9 ± 13.6* 97.2 ± 11.4

HOMA 1.7 ± 1.8 1.8 ± 1.5

IS index (×10–5.min−1/(pmol/l))

Women 6.8 ± 6.5 8.4 ± 10.4

Men 4.2 ± 3.3 5.3 ± 3.3

Acute insulin response (pmol/l) 481 ± 523 324 ± 230

Adiposity and muscle

Abdominal

Total adipose area (cm2) 411 ± 201 400 ± 157

Subcutaneous adiposity (cm2) 306 ± 155 275 ± 132

Visceral adiposity (cm2) 105 ± 86 125 ± 96

Liver density (Hu) 60 ± 11 59 ± 12

Thigh

Total thigh area (cm2) 250 ± 74 244 ± 59

Subcutaneous adiposity (cm2) 124 ± 63 108 ± 51

Intermuscular adiposity (cm2) 12 ± 7 12 ± 8

Muscle area (cm2) 115 ± 37 124 ± 32

Muscle density (Hu) 51 ± 6 52 ± 4

Data presented as mean ± standard deviation or frequency (percentage) unless
otherwise stated
*P <0.05, **P <0.01, ***P <0.001 as compared with controls
BMI body mass index, CCP cyclic citrullinated peptide, DAS Disease Activity
Score, DASESR-28 Disease Activity Score with 28-joint count using the erythrocyte
sedimentation rate, ESR erythrocyte sedimentation rate, HAQ-DI Health Assessment
Questionnaire—Disability Index, HOMA homeostasis model assessment,
hsCRP high-sensitivity C-reactive protein, IL interleukin, IS insulin sensitivity,
NSAID nonsteroidal anti-inflammatory drug, RF rheumatoid factor, SEM standard
error of the mean, TNFα tumor necrosis factor alpha, VAS visual analog scale,
NA not applicable
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Among controls (n = 39), GlycA concentrations were
positively related to hsCRP (r = 0.32, P <0.05) and IL-18
(r = 0.41, P <0.01). GlycA was also related to multiple
measures of adiposity, including BMI (r = 0.38, P <0.02),
waist circumference (r = 0.38, P <0.02), total abdominal
adiposity (r = 0.36, P <0.03), and abdominal (r = 0.34,
P <0.04) and thigh (r = 0.55, P <0.001) subcutaneous
adiposity. GlycA was associated with measures of insulin
resistance including fasting insulin (r = 0.37, P <0.02),
homeostasis model assessment (HOMA; r = 0.39, P <0.02),
and insulin sensitivity (r = −0.34, P <0.04). In a multivari-
able model for controls without RA, both thigh subcutane-
ous adiposity and IL-18 were related independently to
GlycA, and together explained 47 % of the variance in
GlycA (P <0.001, Rthigh subcutaneous adiposity = 0.35, RIL-18 =
0.12; Table 3). GlycA was not related to age or sex in either
RA or non-RA controls (r <0.13 for all).
The GlycA associations strengths were different

between persons with RA and controls for ESR, hsCRP,
IL-18, and acute insulin response to glucose (Table 2;
P <0.05 for all). In persons with RA, GlycA was more
strongly related to the inflammatory markers ESR and
hsCRP, while in controls GlycA was more strongly re-
lated to IL-18 and acute insulin response to glucose.

Discussion
In this study, GlycA concentrations and associations
were compared between mild to moderately active
persons with RA and controls matched for age, sex, and
BMI. GlycA concentrations were greater for those with
RA. Further, GlycA associations differed between the
groups for measures of inflammation (ESR, hsCRP,
IL-18) and insulin sensitivity (acute insulin response to
glucose). In the absence of RA, GlycA concentrations

reflected cardiometabolic risks of adiposity and reduced
insulin sensitivity. In persons with RA, GlycA reflected
primarily disease activity-related inflammation.
Although IL-6 and TNF are associated with RA path-

ology, the molecular mechanism of the disease pathology
remains unknown. Furthermore, commonly used measures
of RA disease severity, CRP, and ESR are nonspecific, with
increased concentrations observed in other chronic

Fig. 1 GlycA is greater in patients with mild–moderate RA compared
with BMI-matched control subjects. Boxes represent the mean (middle
horizontal line) and the 25th and 75th percentiles. Whiskers represent
the 10th and 90th percentiles. Each data point is presented as an open
circle. Mean ± standard deviation concentration of GlycA was greater in
persons with RA (352.8 ± 67.2) than in controls (328.9 ± 53.5); P = 0.036
using an independent t test. RA rheumatoid arthritis

Table 2 GlycA relationships with disease activity, inflammatory,
and adiposity measures

GlycA Fisher transformation

RA Controls P value

Markers of disease activity and inflammation

Disability (HAQ-DI) 0.28 NA NA

Pain (VAS) (mm) 0.08 0.11 0.91

Disease activity (DASESR-28) 0.54‡ NA NA

ESR (mm/hour) 0.71‡ 0.24 0.02

hsCRP (mg/l) 0.73‡ 0.32† 0.01

IL-1β (pg/ml) 0.19 0.08 0.62

IL-6 (pg/ml) 0.28† −0.14 0.05

IL-8 (pg/ml) −0.20 −0.07 0.56

IL-18 (pg/ml) −0.14 0.41† 0.01

TNFα (pg/ml) −0.09 −0.14 0.82

Measures of adiposity and insulin resistance

BMI (kg/m2) 0.16 0.38† 0.28

Waist circumference (cm) 0.12 0.38† 0.22

Total abdominal
adiposity (cm2)

0.31† 0.36† 0.80

Abdominal subcutaneous
adiposity (cm2)

0.26 0.34† 0.70

Abdominal visceral
adiposity (cm2)

0.25 0.21 0.86

Thigh subcutaneous
adiposity (cm2)

0.21 0.55‡ 0.08

Thigh intermuscular
adiposity (cm2)

0.06 0.18 0.60

Thigh muscle density (Hu) −0.33† −0.14 0.40

Fasting insulin (mU/l) 0.18 0.37† 0.38

Fasting glucose (mg/dl) 0.35† 0.16 0.36

HOMA 0.17 0.39† 0.30

IS index (×10–5.min−1/
(pmol/l))

−0.26 −0.34† 0.70

Acute insulin response
(pmol/l)

0.05 0.48† 0.04

Data presented as Spearman correlation coefficients (r)
†0.005 < P <0.05, ‡P ≤0.005
BMI body mass index, DASESR-28 Disease Activity Score with 28-joint count
using the erythrocyte sedimentation rate, ESR erythrocyte sedimentation rate,
HAQ-DI Health Assessment Questionnaire–Disability Index, HOMA homeostasis
model assessment, hsCRP high-sensitivity C-reactive protein, IL interleukin,
IS insulin sensitivity, RA rheumatoid arthritis, TNFα tumor necrosis factor alpha,
VAS visual analog scale, NA not applicable
bold text represents significant associations
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conditions and obesity [18–20]. Identification of a novel in-
flammatory biomarker representative of disease-specific ac-
tivity is therefore critical to identifying new treatments and
targets of RA. We show here for the first time that GlycA
is greater in RA and is predominantly associated with typ-
ical systemic inflammation and less so with adiposity.
The GlycA signal arises largely from the carbohydrate

side-chains on acute phase proteins. Most circulating acute
phase proteins are N-linked glycoproteins. Both acute
inflammation and chronic inflammation induce synthesis
and secretion of increased amounts of these glycoproteins.
Further, inflammation produces increased protein glycosyl-
ation and glycan structure branching [21–23]. All of these
glycan modifications lead to increases in GlycA signals.
While RA pathogenesis involves IL-6-driven upregulation
of the acute phase response [24], IL-6, CRP, and fibrinogen
contribute negligibly, if at all, to the GlycA signal [7].
Instead, for the GlycA signal the main contributors are the
acute phase proteins α1-acid glycoprotein, α1-antitrypsin,
α1-antichymotrypsin, transferrin, and haptoglobin [7].
These acute phase proteins serve as regulators of inflam-
mation, are expressed more in RA, and contribute to RA
pathogenesis [25]. Thus, in RA, increased inflammation
drives increases in concentrations and glycosylation of
acute phase proteins leading to increased GlycA.
In addition to amounts of GlycA, RA-specific associa-

tions for GlycA suggest differences in GlycA composition.
In RA, GlycA may contain different acute phase protein
glycosylations, isoforms, and/or proportions. For example,
haptoglobin is a hemoglobin binding protein responsible
for limiting tissue damage caused by hemoglobin-induced
oxidative stress [26, 27]. While haptoglobin is typically
anti-inflammatory, glycosylation site alterations have been
identified in RA and other diseases such as cancer; the

ability of glycosylation to alter protein function and im-
munogenicity suggests that glycosylation alterations may
serve pathogenic roles [28–30]. In RA synovial fluid, a
specific haptoglobin isoform upregulates monocyte IL-6
production [31]. Also, synthesis of haptoglobin is primar-
ily hepatic; however, it is also produced by activated neu-
trophils and taken up peripherally by monocytes [32, 33].
Thus, the source, balance, and functions of haptoglobin
and other acute phase proteins in RA are different from
those in healthy controls and likely contribute to different
GlycA associations [31]. Although we did not assess the
individual acute phase protein contributions to GlycA in
this sample, we suggest that GlycA is a comprehensive
measure of pathogenic inflammation in RA.
The full clinical implications of GlycA in RA are thus

unclear. Given that it reflects multiple types of inflamma-
tion, GlycA may be able to serve as a composite marker of
overall inflammatory risk in RA. An example is the work
showing that GlycA was associated with coronary artery
calcium in RA [13]. It is likely that both disease-related
and adiposity-related inflammation contribute to RA car-
diovascular risk as well as other negative outcomes. Future
work is necessary to define the role of GlycA in RA early
preventive and treatment strategies.
In those without RA, the GlycA signal appears to be

driven by glycosylation of a different set of acute phase pro-
teins, those associated with cardiometabolic risk [13, 34].
Recently, GlycA was associated with greater leptin to adi-
ponectin ratios [34], an indicator of dysfunctional adipose
tissue, leptin resistance, and insulin resistance, in subjects
with metabolic syndrome or type 2 diabetes [35, 36]. Here,
greater GlycA concentrations were associated with more
adiposity as reflected by larger BMIs, larger waist circum-
ferences, and greater amounts of thigh and abdominal
subcutaneous adiposity. Also, greater GlycA levels, but
not hsCRP (data not shown), were associated with more
fasting insulin, more pancreatic beta-cell insulin secretion,
and less skeletal muscle insulin sensitivity; all indicators of
greater diabetes risk.
GlycA was associated with increased IL-18 in those

without RA but not in those with RA, again highlighting
differences in inflammation associated with chronic
inflammatory diseases and obesity. In RA, IL-18 concen-
trations are greater than those without RA and are re-
lated to disease activity [37, 38]. IL-18 acts locally within
the synovium to stimulate macrophage production of
TNFα; subsequently, TNFα stimulates synovial fibroblast
production of IL-18, generating a positive, inflammatory
feedback loop [37]. IL-18 stimulates fibroblasts to se-
crete mediators of leukocyte recruitment and activation,
angiogenesis, and cartilage destruction [37].
While IL-18 is secreted primarily by macrophages and

other immune cells, adipocytes are capable of constitutively
producing IL-18 and increase IL-18 synthesis in obesity

Table 3 Multivariable models for GlycA (log) in persons with
rheumatoid arthritis and controls

Parameter estimate Partial R2 P value

Rheumatoid arthritis: model R2 = 0.74, n = 48

hsCRP (log mg/l) 58.4 0.59 <0.0001

ESR (mm/hour) 1.8 0.11 0.002

Thigh muscle density (Hu) −2.7 0.05 0.01

Controls without rheumatoid arthritis: model R2 = 0.47, n = 33

Thigh subcutaneous
adiposity (cm2)

0.54 0.35 0.0003

IL-18 (log pg/ml) 132.6 0.12 0.01

Multivariable modeling was performed using linear models with forward
stepwise variable selection. Variables for forward selection were based on
significant results from bivariate analyses shown in Table 2. For RA patients,
variables were selected from disease activity (DAS-28), ESR, hsCRP (log),
IL-6 (log), total abdominal adiposity, thigh muscle density, fasting glucose, age,
and gender. For controls, variables were selected from hsCRP (log), IL-18 (log),
total abdominal adiposity, thigh subcutaneous adiposity, acute insulin response,
insulin sensitivity, age, and gender. Final models are shown
DAS-28 Disease Activity Score, ESR erythrocyte sedimentation rate, hsCRP high-
sensitivity C-reactive protein, IL interleukin

Bartlett et al. Arthritis Research & Therapy  (2016) 18:86 Page 5 of 7



[39, 40]. IL-18 has been shown to be a marker of metabolic
disease, insulin resistance, and CVD risk, and is reduced
following exercise and diet [40, 41]. Perhaps adipose tissue-
derived, but not synovial-derived or immune cell-derived,
IL-18 leads to altered acute phase protein glycosylation, but
additional work is necessary to confirm this assertion.
We recognize that this study has several limitations.

While performing multiple correlations increased the pos-
sibility for type I statistical errors, we attempted to
minimize the likelihood by integrating the findings into
themes (i.e. traditional inflammation and cardiometabolic
risk) of associations for GlycA. Also, while the sample size
is limited, we believe this is outweighed by the strength of
detailed phenotyping with CT scans for adiposity mea-
sures and IVGTTs for insulin action. Additionally, as this
investigation is cross-sectional, causal relationships cannot
be proven. Most importantly, this study is unable to com-
ment on how GlycA levels might change over time with
changes in disease activity or cardiometabolic risks.

Conclusions
In summary, GlycA provides an integrated measure of
inflammation with contributions from traditional inflam-
matory and cardiometabolic sources, dominated by the
former in persons with RA and by the latter in those with-
out. Taken together, these findings suggest that the glyco-
sylation mechanism of acute phase proteins is different in
inflammatory disease compared with increased adiposity.
Additional investigations, especially longitudinal studies,
will illuminate roles for GlycA to serve as a biomarker for
inflammatory and cardiometabolic disease.
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