32 research outputs found

    High precision hybrid RF and ultrasonic chirp-based ranging for low-power IoT nodes

    Get PDF
    Hybrid acoustic-RF systems offer excellent ranging accuracy, yet they typically come at a power consumption that is too high to meet the energy constraints of mobile IoT nodes. We combine pulse compression and synchronized wake-ups to achieve a ranging solution that limits the active time of the nodes to 1 ms. Hence, an ultra low-power consumption of 9.015 µW for a single measurement is achieved. The operation time is estimated on 8.5 years on a CR2032 coin cell battery at a 1 Hz update rate, which is over 250 times larger than state-of-the-art RF-based positioning systems. Measurements based on a proof-of-concept hardware platform show median distance error values below 10 cm. Both simulations and measurements demonstrate that the accuracy is reduced at low signal-to-noise ratios and when reflections occur. We introduce three methods that enhance the distance measurements at a low extra processing power cost. Hence, we validate in realistic environments that the centimeter accuracy can be obtained within the energy budget of mobile devices and IoT nodes. The proposed hybrid signal ranging system can be extended to perform accurate, low-power indoor positioning

    ECOPLAN-SE: Ruimtelijke analyse van ecosysteemdiensten in Vlaanderen, een Q-GIS plugin

    Get PDF
    ECOPLAN-SE is een ruimtelijk expliciete tool (QGIS) voor het beoordelen van de impact van landgebruikveranderingen op de levering van ecosysteemdiensten. De ontwikkeling van deze tool kadert in het het SBO-project “ECOPLAN” (Planning for Ecosystem Services). ECOPLAN ontwikkelt ruimtelijk expliciete informatie en instrumenten voor de beoordeling van ecosysteemdiensten. Het ontwerpt instrumenten voor de evaluatie van functionele ecosystemen als een kostenefficiënte strategie om de landgebruiksefficiëntie en milieukwaliteit te verbeteren. Het ontwikkelt open source eindproducten voor het identificeren, kwantificeren, waarderen, valideren en monitoren van ecosysteemdiensten. Deze producten kunnen door administraties en consultants worden ingezet in projectontwikkeling, kosten-baten analyses, milieueffecten rapportering, etc

    Preclinical in vivo longitudinal assessment of KG207-M as a disease-modifying Alzheimer's disease therapeutic

    Get PDF
    In vivo biomarker abnormalities provide measures to monitor therapeutic interventions targeting amyloid-β pathology as well as its effects on downstream processes associated with Alzheimer’s disease pathophysiology. Here, we applied an in vivo longitudinal study design combined with imaging and cerebrospinal fluid biomarkers, mirroring those used in human clinical trials to assess the efficacy of a novel brain-penetrating anti-amyloid fusion protein treatment in the McGill-R-Thy1-APP transgenic rat model. The bi-functional fusion protein consisted of a blood-brain barrier crossing single domain antibody (FC5) fused to an amyloid-β oligomer-binding peptide (ABP) via Fc fragment of mouse IgG (FC5-mFc2a-ABP). A five-week treatment with FC5-mFc2a-ABP (loading dose of 30 mg/Kg/iv followed by 15 mg/Kg/week/iv for four weeks) substantially reduced brain amyloid-β levels as measured by positron emission tomography and increased the cerebrospinal fluid amyloid-β42/40 ratio. In addition, the 5-week treatment rectified the cerebrospinal fluid neurofilament light chain concentrations, resting-state functional connectivity, and hippocampal atrophy measured using magnetic resonance imaging. Finally, FC5-mFc2a-ABP (referred to as KG207-M) treatment did not induce amyloid-related imaging abnormalities such as microhemorrhage. Together, this study demonstrates the translational values of the designed preclinical studies for the assessment of novel therapies based on the clinical biomarkers providing tangible metrics for designing early-stage clinical trials

    Dedicated Hardware for Attribute-Based Credential Verification

    No full text
    Part 1: Research PapersInternational audienceAttribute-based credentials systems offer a privacy-friendly solution to access electronic services. In this field, most research has been directed into optimizing the prover operations and exploring the usability boundaries on mobile platforms like smart cards and mobile phones. This research assumes that the verification of credential proofs occur at a powerful back end. However, a broad range of (embedded) applications lack this powerful back end.This article shows that hardware accelerators for modular exponentiations, greatly reduce the run time of applications that require credential verification in an embedded context. In addition, when verification requires a considerable amount of the total run time (i.e., communication included), the use of dual-base (simultaneous) exponentiation hardware further increases the overall performance.All tests have been performed in a practical setup between a smartphone and an embedded terminal using NFC communication
    corecore