8 research outputs found

    Evaluation of Concrete Cylinder Tests Using Finite Elements

    No full text
    Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height-to-diameter ratios (h/d) ranging from 1–3 are treated. A simple constitutive model of the concrete is employed, which accounts for the strain hardening and softening in the pre- and postfailure regions, respectively. When h/d = 2, the failure mode is found to consist of undisturbed end cones and the occurrence of strain softening, especially in the outer region of the cylinder middle. For shorter cylinders the strain softening is more pronounced along the surface of the cylinder middle, whereas longer cylinders exhibit a more uniform distribution of strain softening. The failure modes for force and displacement controlled tests are found to be similar. If long cylinders are to provide the true uniaxial strength the use of geometrically matched loading plates seems to be advantageous. Finally, it is observed that for variations of the element size within limits otherwise required to obtain a realistic analysis, the results are insensitive to the element size

    A gradient-based multiaxial criterion for fatigue crack initiation prediction in components with surface roughness

    No full text
    The current study presents methods to predict the governing crack initiation site and fatigue crack initiation life of components with surface roughness. The surface topography is measured with white light interferometry and explicitly accounted for in detailed finite element models. The micro-notch stress fields are used in multiaxial and uniaxial crack initiation criteria where the relative stress gradient is included. The numerical predictions are compared with test results for cylindrical aluminum specimens with axi-symmetric surface roughness. Damage parameters based on the average stress fields over a certain distance were found to be highest in the micro-notches where cracks grew to failure. Lifetime predictions using a multiaxial damage criterion with a gradient correction and elastic-plastic stress fields showed good correlation with the experiments. Uniaxial criteria, criteria without gradient correction, and criteria based on linear elastic stress fields were found to be overly conservative. In some specimens, the failure location could not be identified by the proposed damage criterion. This is likely due to the presence of microstructural weaknesses near the micro-notches, leading to shorter initiation lives that cannot be described by geometry alone. It is concluded that resolving the detailed surface topography and accounting for this geometry in a detailed finite element model provide a predictive approach when multiaxial stresses are accounted for, but the importance of microstructure needs further attention.submittedVersionThis is a submitted manuscript of an article published by Elsevier Ltd in International Journal of Fatigue, 20 August 2018

    A gradient-based multiaxial criterion for fatigue crack initiation prediction in components with surface roughness

    No full text
    The current study presents methods to predict the governing crack initiation site and fatigue crack initiation life of components with surface roughness. The surface topography is measured with white light interferometry and explicitly accounted for in detailed finite element models. The micro-notch stress fields are used in multiaxial and uniaxial crack initiation criteria where the relative stress gradient is included. The numerical predictions are compared with test results for cylindrical aluminum specimens with axi-symmetric surface roughness. Damage parameters based on the average stress fields over a certain distance were found to be highest in the micro-notches where cracks grew to failure. Lifetime predictions using a multiaxial damage criterion with a gradient correction and elastic-plastic stress fields showed good correlation with the experiments. Uniaxial criteria, criteria without gradient correction, and criteria based on linear elastic stress fields were found to be overly conservative. In some specimens, the failure location could not be identified by the proposed damage criterion. This is likely due to the presence of microstructural weaknesses near the micro-notches, leading to shorter initiation lives that cannot be described by geometry alone. It is concluded that resolving the detailed surface topography and accounting for this geometry in a detailed finite element model provide a predictive approach when multiaxial stresses are accounted for, but the importance of microstructure needs further attention

    A continuum based macroscopic unified low-and high cycle fatigue model

    Get PDF
    Abstract In this work, an extension of a previously developed continuum based high-cycle fatigue model is enhanced to also capture the low-cycle fatigue regime, where significant plastic deformation of the bulk material takes place. Coupling of the LCFand HCF-models is due to the damage evolution equation. The high-cycle part of the model is based on the concepts of a moving endurance surface in the stress space with an associated evolving isotropic damage variable. Damage evolution in the low-cycle part is determined via plastic deformations and endurance function. For the plastic behaviour a non-linear isotropic and kinematic hardening J2-plasticity model is adopted. Within this unified approach, there is no need for heuristic cycle-counting approaches since the model is formulated by means of evolution equations, i.e. incremental relations, and not changes per cycle. Moreover, the model is inherently multiaxial and treats the uniaxial and multiaxial stress histories in the same manner. Calibration of the model parameters is discussed and results from some test cases are shown

    Extreme Yield Figures for Universal Strength Criteria

    No full text
    We propose a universal, generally applicable yield criterion that describes a single convex surface in principal stress space encompassing extreme yield figures as convexity limits. The novel criterion is derived phenomenologically exploiting geometrical properties of yield surfaces in principal stress space. It is systematically compared with known yield criteria using different forms of visualization. Using a I1-substitution the criterion is applicable to materials with pressure-sensitive behavior and contains well-known strength criteria. Introducing appropriate parameter restrictions, it can be applied for the modeling of ductile and brittle material behavior. The implementation of the present criterion eliminates the necessity of choosing a specific yield criterion for a particular material. The proposed criterion allows for excellent approximation of experimental data. It is applied to measured data of concrete and provides better accuracy than existing criteria from literature
    corecore